import os
import matplotlib.pyplot as plt
import pandas as pd
from scipy.constants import N_A
from wholecell.utils.filepath import ROOT_PATH
plt.rcParams["svg.fonttype"] = "none"
plt.rcParams["font.family"] = "Arial"
DE_GENES = pd.read_csv(
os.path.join(ROOT_PATH, "reconstruction/ecoli/flat/tetracycline/gene_fc.csv")
)
SPLIT_TIME = 11550
MAX_TIME = 26000
COUNTS_PER_FL_TO_NANOMOLAR = 1 / (1e-15) / N_A * (1e9)
# Average generation time (average of all cells except those
# in final generation of simulation IDs: '2022-12-08_00-33-56_581605+0000',
# '2022-12-08_00-35-12_754291+0000', '2022-12-08_00-35-28_562633+0000')
AVG_GEN_TIME = 3137.0669216061187
# Mapping: Condition -> Seed -> Experiment ID
EXPERIMENT_ID_MAPPING = {
"Glucose": {
0: "2022-12-08_00-33-56_581605+0000",
100: "2022-12-08_00-35-12_754291+0000",
10000: "2022-12-08_00-35-28_562633+0000",
},
"Tetracycline (1.5 mg/L)": {
0: "2023-01-05_01-00-44_215314+0000",
100: "2023-01-05_01-00-52_399146+0000",
10000: "2023-01-05_01-01-02_513996+0000",
},
"Tetracycline (4 mg/L)": {0: "2023-01-05_01-01-09_970526+0000"},
"Tetracycline (2 mg/L)": {0: "2023-01-05_01-01-16_783140+0000"},
"Tetracycline (1 mg/L)": {
0: "2023-01-05_01-01-23_555787+0000",
},
"Tetracycline (0.5 mg/L)": {
0: "2023-01-05_01-01-32_083738+0000",
},
"Ampicillin (2 mg/L)": {
0: "2022-12-08_17-03-56_357734+0000",
100: "2022-12-08_17-04-20_544970+0000",
10000: "2022-12-08_17-04-52_137662+0000",
},
"Ampicillin (4 mg/L)": {
0: "2022-12-08_17-08-04_777218+0000",
},
"Ampicillin (1.5 mg/L)": {
0: "2022-12-08_17-07-14_437731+0000",
},
"Ampicillin (1 mg/L)": {
0: "2022-12-08_17-06-35_367185+0000",
},
"Ampicillin (0.5 mg/L)": {
0: "2022-12-08_19-13-14_431590+0000",
},
}
PATHS_TO_LOAD = {
"Dry mass": ("listeners", "mass", "dry_mass"),
"Protein mass": ("listeners", "mass", "proteinMass"),
"Dry mass fold change": ("listeners", "mass", "dryMassFoldChange"),
"Protein mass fold change": ("listeners", "mass", "proteinMassFoldChange"),
"RNA mass fold change": ("listeners", "mass", "rnaMassFoldChange"),
"Small molecule fold change": ("listeners", "mass", "smallMoleculeFoldChange"),
"Cell mass": ("listeners", "mass", "cell_mass"),
"Water mass": ("listeners", "mass", "water_mass"),
"RNA mass": ("listeners", "mass", "rnaMass"),
"rRNA mass": ("listeners", "mass", "rRnaMass"),
"tRNA mass": ("listeners", "mass", "tRnaMass"),
"mRNA mass": ("listeners", "mass", "mRnaMass"),
"DNA mass": ("listeners", "mass", "dnaMass"),
"Small molecule mass": ("listeners", "mass", "smallMoleculeMass"),
"Projection mass": ("listeners", "mass", "projection_mass"),
"Cytosol mass": ("listeners", "mass", "cytosol_mass"),
"Extracellular mass": ("listeners", "mass", "extracellular_mass"),
"Flagellum mass": ("listeners", "mass", "flagellum_mass"),
"Membrane mass": ("listeners", "mass", "membrane_mass"),
"Outer membrane mass": ("listeners", "mass", "outer_membrane_mass"),
"Periplasm mass": ("listeners", "mass", "periplasm_mass"),
"Pilus mass": ("listeners", "mass", "pilus_mass"),
"Inner membrane mass": ("listeners", "mass", "inner_membrane_mass"),
"Growth rate": ("listeners", "mass", "growth"),
"AcrAB-TolC": ("bulk", "TRANS-CPLX-201[m]"),
"Periplasmic tetracycline": ("periplasm", "concentrations", "tetracycline"),
"Cytoplasmic tetracycline": ("cytoplasm", "concentrations", "tetracycline"),
"Periplasmic ampicillin": ("periplasm", "concentrations", "ampicillin"),
"Active MarR": ("bulk", "CPLX0-7710[c]"),
"Inactive MarR": ("bulk", "marR-tet[c]"),
"micF-ompF duplex": ("bulk", "micF-ompF[c]"),
"micF RNA": (
"bulk",
"MICF-RNA[c]",
),
"30S subunit": ("bulk", "CPLX0-3953[c]"),
"Inactive 30S subunit": ("bulk", "CPLX0-3953-tetracycline[c]"),
"Active ribosomes": ("listeners", "aggregated", "active_ribosome_len"),
"Active RNAP": ("listeners", "aggregated", "active_RNAP_len"),
"Outer tet. permeability (cm/s)": (
"kinetic_parameters",
"outer_tetracycline_permeability",
),
"Murein tetramer": ("bulk", "CPD-12261[p]"),
"PBP1a complex": ("bulk", "CPLX0-7717[m]"),
"PBP1a mRNA": ("mrna", "EG10748_RNA"),
"PBP1b alpha complex": ("bulk", "CPLX0-3951[i]"),
"PBP1b mRNA": ("mrna", "EG10605_RNA"),
"PBP1b gamma complex": ("bulk", "CPLX0-8300[c]"),
"Wall cracked": ("wall_state", "cracked"),
"AmpC monomer": ("monomer", "EG10040-MONOMER"),
"ampC mRNA": ("mrna", "EG10040_RNA"),
"Extension factor": ("wall_state", "extension_factor"),
"Wall columns": ("wall_state", "lattice_cols"),
"Unincorporated murein": ("murein_state", "unincorporated_murein"),
"Incorporated murein": ("murein_state", "incorporated_murein"),
"Shadow murein": ("murein_state", "shadow_murein"),
"Max hole size": ("listeners", "hole_size_distribution"),
"Porosity": ("listeners", "porosity"),
"Active fraction PBP1a": ("pbp_state", "active_fraction_PBP1A"),
"Active fraction PBP1b": ("pbp_state", "active_fraction_PBP1B"),
"Boundary": ("boundary",),
"Volume": ("listeners", "mass", "volume"),
"Total mRNA": ("total_mrna",),
"OmpF complex": ("bulk", "CPLX0-7534[o]"),
"Exchanges": ("environment", "exchange"),
}
for gene_data in DE_GENES[["Gene name", "id", "monomer_ids"]].values:
if gene_data[0] != "MicF":
PATHS_TO_LOAD[f"{gene_data[0]} mRNA"] = ("mrna", gene_data[1])
PATHS_TO_LOAD[f"{gene_data[0]} synth prob"] = ("rna_synth_prob", gene_data[1])
gene_data[2] = eval(gene_data[2])
if len(gene_data[2]) > 0:
monomer_name = gene_data[0][0].upper() + gene_data[0][1:]
PATHS_TO_LOAD[f"{monomer_name} monomer"] = ("monomer", gene_data[2][0])
# Housekeeping gene GAPDH for normalization between samples
PATHS_TO_LOAD["GAPDH mRNA"] = ("mrna", "EG10367_RNA")
PATHS_TO_LOAD["GAPDH synth prob"] = ("rna_synth_prob", "EG10367_RNA")
PATHS_TO_LOAD["GAPDH monomer"] = ("monomer", "GAPDH-A-MONOMER")
# RNAP monomers and mRNAs
PATHS_TO_LOAD["rpoA mRNA"] = ("mrna", "EG10893_RNA")
PATHS_TO_LOAD["rpoB mRNA"] = ("mrna", "EG10894_RNA")
PATHS_TO_LOAD["rpoC mRNA"] = ("mrna", "EG10895_RNA")
PATHS_TO_LOAD["RpoA monomer"] = ("monomer", "EG10893-MONOMER")
PATHS_TO_LOAD["RpoB monomer"] = ("monomer", "RPOB-MONOMER")
PATHS_TO_LOAD["RpoC monomer"] = ("monomer", "RPOC-MONOMER")
[docs]
def restrict_data(data: pd.DataFrame):
"""If there is more than one condition in data, keep up
to SPLIT_TIME from the first condition and between SPLIT_TIME
and MAX_TIME from the the rest."""
conditions = data.loc[:, "Condition"].unique()
if len(conditions) > 1:
data = data.set_index(["Condition"])
condition_1_mask = data.loc[conditions[0]]["Time"] <= SPLIT_TIME
filtered_data = [data.loc[conditions[0]].loc[condition_1_mask, :]]
for exp_condition in conditions[1:]:
condition_mask = (data.loc[exp_condition]["Time"] >= SPLIT_TIME) & (
data.loc[exp_condition]["Time"] <= MAX_TIME
)
filtered_data.append(data.loc[exp_condition].loc[condition_mask, :])
data = pd.concat(filtered_data)
data = data.reset_index()
else:
data = data.loc[data.loc[:, "Time"] <= MAX_TIME, :]
return data