Source code for ecoli.analysis.single.mass_fraction_summary

import os
from typing import Any, cast

from duckdb import DuckDBPyConnection
import polars as pl
import altair as alt

from ecoli.library.parquet_emitter import num_cells, read_stacked_columns

COLORS_256 = [  # From colorbrewer2.org, qualitative 8-class set 1
    [228, 26, 28],
    [55, 126, 184],
    [77, 175, 74],
    [152, 78, 163],
    [255, 127, 0],
    [255, 255, 51],
    [166, 86, 40],
    [247, 129, 191],
]

COLORS = ["#%02x%02x%02x" % (color[0], color[1], color[2]) for color in COLORS_256]


[docs] def plot( params: dict[str, Any], conn: DuckDBPyConnection, history_sql: str, config_sql: str, sim_data_paths: dict[str, dict[int, str]], validation_data_paths: list[str], outdir: str, variant_metadata: dict[str, dict[int, Any]], variant_names: dict[str, str], ): assert ( num_cells(conn, config_sql) == 1 ), "Mass fraction summary plot requires single-cell data." mass_columns = { "Protein": "listeners__mass__protein_mass", "tRNA": "listeners__mass__tRna_mass", "rRNA": "listeners__mass__rRna_mass", "mRNA": "listeners__mass__mRna_mass", "DNA": "listeners__mass__dna_mass", "Small Mol": "listeners__mass__smallMolecule_mass", "Dry": "listeners__mass__dry_mass", } mass_data = pl.DataFrame( read_stacked_columns(history_sql, list(mass_columns.values()), conn=conn) ) fractions = { k: cast(float, (mass_data[v] / mass_data["listeners__mass__dry_mass"]).mean()) for k, v in mass_columns.items() } new_columns = { "Time (min)": (mass_data["time"] - mass_data["time"].min()) / 60, **{ f"{k} ({fractions[k]:.3f})": mass_data[v] / mass_data[v][0] for k, v in mass_columns.items() }, } mass_fold_change_df = pl.DataFrame(new_columns) # Altair requires long form data (also no periods in column names) melted_df = mass_fold_change_df.melt( id_vars="Time (min)", variable_name="Submass", value_name="Mass (normalized by t = 0 min)", ) chart = ( alt.Chart(melted_df) .mark_line() .encode( x=alt.X("Time (min):Q", title="Time (min)"), y=alt.Y("Mass (normalized by t = 0 min):Q"), color=alt.Color("Submass:N", scale=alt.Scale(range=COLORS)), ) .properties( title="Biomass components (average fraction of total dry mass in parentheses)" ) ) chart.save(os.path.join(outdir, "mass_fraction_summary.html"))