Source code for ecoli.library.sim_data

import os
import re
import binascii
from itertools import chain
import numpy as np
import pickle
from typing import Any, Optional, TYPE_CHECKING
from vivarium.library.units import units as vivunits
from wholecell.utils import units
from wholecell.utils.unit_struct_array import UnitStructArray
from wholecell.utils.fitting import normalize
from wholecell.utils.filepath import ROOT_PATH

from ecoli.analysis.antibiotics_colony import DE_GENES
from ecoli.processes.polypeptide_elongation import MICROMOLAR_UNITS
from ecoli.library.parameters import param_store
from ecoli.library.initial_conditions import (
    calculate_cell_mass,
    initialize_bulk_counts,
    initialize_trna_charging,
    initialize_unique_molecules,
    set_small_molecule_counts,
)

if TYPE_CHECKING:
    from reconstruction.ecoli.simulation_data import SimulationDataEcoli

RAND_MAX = 2**31
SIM_DATA_PATH = os.path.join(ROOT_PATH, "reconstruction/sim_data/kb/simData.cPickle")
SIM_DATA_PATH_NO_OPERONS = os.path.join(
    ROOT_PATH, "reconstruction/sim_data/kb_no_operons/simData.cPickle"
)
MAX_TIME_STEP = 1


[docs] class LoadSimData: def __init__( self, sim_data_path: str = SIM_DATA_PATH, seed: int = 0, total_time: int = 10, fixed_media: Optional[str] = None, media_timeline: tuple[tuple[int, str]] = ( (0, "minimal"), ), # have to change both media_timeline and condition condition: str = "basal", trna_charging: bool = True, ppgpp_regulation: bool = True, mar_regulon: bool = False, process_configs: Optional[dict[str, Any]] = None, amp_lysis: bool = False, mass_distribution: bool = True, superhelical_density: bool = False, recycle_stalled_elongation: bool = False, mechanistic_replisome: bool = False, trna_attenuation: bool = True, variable_elongation_transcription: bool = True, variable_elongation_translation: bool = False, mechanistic_translation_supply: bool = True, mechanistic_aa_transport: bool = True, translation_supply: bool = True, aa_supply_in_charging: bool = True, disable_ppgpp_elongation_inhibition: bool = False, # TODO: Implement these adjust_timestep_for_charging: bool = False, time_step_safety_fraction: float = 1.3, update_time_step_freq: int = 5, max_time_step: int = MAX_TIME_STEP, emit_unique: bool = False, **kwargs, ): """ Loads simulation data generated by the ParCa (:py:func:`~reconstruction.ecoli.fit_sim_data_1.fitSimData_1`, runscript located at :py:mod:`runscripts.parca`) and extracts parameters for each process. Typically instantiated by :py:class:`~ecoli.composites.ecoli_master.Ecoli` with keyword arguments given by the config loaded by :py:class:`~ecoli.experiments.ecoli_master_sim.EcoliSim`. Args: sim_data_path: Path to simulation data pickle file seed: Used to deterministically seed all random number generators. Simulations with the same seed will yield the same output. total_time: Time to simulate (seconds) media_timeline: Iterable of tuples where the first element of each tuple is the time to start using a certain media and the second element is a string corresponding to one of the media options in ``self.sim_data.external_state.saved_media`` trna_charging: Use steady-state charging model (:py:class:`~ecoli.processes.polypeptide_elongation.SteadyStateElongationModel`) in :py:class:`~ecoli.processes.polypeptide_elongation.PolypeptideElongation` ppgpp_regulation: Enable growth rate control using ppGpp in polypeptide elongation and transcript initiation mar_regulon: Enable tetracycline-related transcriptional regulation of antibiotic resistance genes by the mar operon process_configs: Mapping of process names to config dictionaries, currently only used to configure :py:class:`~ecoli.processes.rna_interference.RnaInterference` amp_lysis: Enable ampicillin-induced lysis, adds ampicillin and hydrolyzed ampicillin to bulk molecule store mass_distribution: If ``config['division_variable']`` is set to ``('listeners', 'mass', 'dry_mass')`` and ``config['division_threshold']`` is set to ``'mass_distribution'``, enabling this multiplies the division threshold by a Gaussian noise factor. If the simulation is configured to generate an initial state from pickled simulation data (see option 3 in :py:meth:`~ecoli.composites.ecoli_master.Ecoli.initial_state`), enabling this adds Gaussian noise to the generated state superhelical_density: Enables superhelical density calculations on ``('unique', 'chromosomal_segment)'`` molecules in :py:class:`~ecoli.processes.chromosome_structure.ChromosomeStructure` mechanistic_replisome: Ensures that there are adequate replisome subunits to initiate each round of chromosome replication in :py:class:`~ecoli.processes.chromosome_replication.ChromosomeReplication` recycle_stalled_elongation: Free up RNAPs and nucleotides for stalled transcripts in :py:class:`~ecoli.processes.transcript_elongation.TranscriptElongation` trna_attenuation: Implements `attenuation <https://en.wikipedia.org/wiki/Attenuator_(genetics)>`_ in :py:class:`~ecoli.processes.transcript_initiation.TranscriptInitiation` and :py:class:`~ecoli.processes.transcript_elongation.TranscriptElongation` variable_elongation_transcription: Allow different elongation rate for different transcripts (currently increases rates for rRNA, see :py:meth:`~reconstruction.ecoli.dataclasses.process.transcription.Transcription.make_elongation_rates`). Usually set this consistently for ParCa and simulation. :py:class:`~ecoli.processes.transcript_initiation.TranscriptInitiation` Usually set this consistently for ParCa and simulation. variable_elongation_translation: Allow different polypeptides to have different translation rates (currently increases rates for ribosomal proteins, see :py:meth:`~reconstruction.ecoli.dataclasses.process.translation.Translation.make_elongation_rates`). Usually set this consistently for ParCa and simulation. mechanistic_translation_supply: Calculate charged tRNA supply using starting amino acid concentration only based on mechanistic synthesis and supply in :py:class:`~ecoli.processes.polypeptide_elongation.PolypeptideElongation` when ``trna_charging`` is ``True`` mechanistic_aa_transport: Constrain amino acid uptake based on external concentrations and exchange rates in :py:class:`~ecoli.processes.metabolism.Metabolism` translation_supply: Use :py:class:`~ecoli.processes.polypeptide_elongation.TranslationSupplyElongationModel` in :py:class:`~ecoli.processes.polypeptide_elongation.PolypeptideElongation`. Superseded by ``trna_charging`` aa_supply_in_charging: Calculate charged tRNA supply from each sub time step while solving the charging steady state in :py:class:`~ecoli.processes.polypeptide_elongation.PolypeptideElongation` when ``trna_charging`` is ``True`` disable_ppgpp_elongation_inhibition: Turn off ppGpp-mediated inhibition in :py:class:`~ecoli.processes.polypeptide_elongation.PolypeptideElongation` when ``trna_charging`` is ``True`` """ self.seed = seed self.total_time = total_time self.random_state = np.random.RandomState(seed=seed) # Iterable of tuples with the format (time, media_id) if condition is not None: self.condition = condition if fixed_media is not None and media_timeline is not None: media_timeline = ((0, fixed_media),) self.media_timeline = media_timeline self.trna_charging = trna_charging self.ppgpp_regulation = ppgpp_regulation self.mass_distribution = mass_distribution self.superhelical_density = superhelical_density self.mechanistic_replisome = mechanistic_replisome self.trna_attenuation = trna_attenuation self.variable_elongation_transcription = variable_elongation_transcription self.variable_elongation_translation = variable_elongation_translation self.mechanistic_translation_supply = mechanistic_translation_supply self.mechanistic_aa_transport = mechanistic_aa_transport self.translation_supply = translation_supply self.aa_supply_in_charging = aa_supply_in_charging self.adjust_timestep_for_charging = adjust_timestep_for_charging self.disable_ppgpp_elongation_inhibition = disable_ppgpp_elongation_inhibition self.recycle_stalled_elongation = recycle_stalled_elongation self.emit_unique = emit_unique # NEW to vivarium-ecoli: Whether to lump miscRNA with mRNAs # when calculating degradation self.degrade_misc = False # load sim_data with open(sim_data_path, "rb") as sim_data_file: self.sim_data: "SimulationDataEcoli" = pickle.load(sim_data_file) if condition is not None: self.sim_data.condition = condition # Used by processes to apply submass updates to correct unique attr self.submass_indices = { f"massDiff_{submass}": idx for submass, idx in self.sim_data.submass_name_to_index.items() } # Logic to handle internal shifts if "agent_id" in kwargs and hasattr(self.sim_data, "internal_shift_dict"): generation = len(kwargs["agent_id"]) func_to_apply = None func_params = () for shift_gen, ( shift_func, shift_params, ) in self.sim_data.internal_shift_dict.items(): if generation >= shift_gen: func_to_apply = shift_func func_params = shift_params if func_to_apply is not None: func_to_apply(self.sim_data, *func_params) # NEW to vivarium-ecoli # Changes gene expression upon tetracycline exposure # Note: Incompatible with operons because there are genes # that are part of the same operon but have different changes # in expression under tetracycline exposure (e.g. marRAB) if mar_regulon: # Define aliases to reduce code verbosity treg_alias = self.sim_data.process.transcription_regulation bulk_mol_alias = self.sim_data.internal_state.bulk_molecules eq_alias = self.sim_data.process.equilibrium # Assume marA (PD00365) controls the entire tetracycline # gene expression program and marR (CPLX0-7710) is inactivated # by complexation with tetracycline treg_alias.tf_ids += ["PD00365", "CPLX0-7710"] treg_alias.delta_prob["shape"] = ( treg_alias.delta_prob["shape"][0], treg_alias.delta_prob["shape"][1] + 2, ) treg_alias.tf_to_tf_type["PD00365"] = "0CS" treg_alias.tf_to_tf_type["CPLX0-7710"] = "1CS" treg_alias.active_to_bound["CPLX0-7710"] = "marR-tet" # TU index of genes for outer membrane proteins, regulators, # and inner membrane transporters new_deltaI = DE_GENES["TU_idx"].to_numpy() new_deltaJ = np.array([24] * 24) # Values were chosen to recapitulate mRNA fold change when exposed # to 1.5 mg/L tetracycline (Viveiros et al. 2007) new_deltaV = np.array( [ 1.76e-03, 2.21e-05, 2.44e-05, 2.10e-06, 4.11e-06, 7.80e-06, 5.40e-04, 7.42e-06, 1.51e-06, 2.95e-05, 2.02e-05, 1.96e-04, 5.77e-05, 2.34e-04, 2.04e-06, 1.58e-07, 8.89e-08, 8.52e-07, 8.09e-06, 1.68e-08, 7.17e-08, 8.08e-06, 1.40e-08, -5.30e-07, ] ) treg_alias.delta_prob["deltaI"] = np.concatenate( [treg_alias.delta_prob["deltaI"], new_deltaI] ) treg_alias.delta_prob["deltaJ"] = np.concatenate( [treg_alias.delta_prob["deltaJ"], new_deltaJ] ) treg_alias.delta_prob["deltaV"] = np.concatenate( [treg_alias.delta_prob["deltaV"], new_deltaV] ) # Add mass data for tetracycline, marR-tet, and 30s-tet bulk_data = bulk_mol_alias.bulk_data.fullArray() marR_mass = np.array(bulk_data[bulk_data["id"] == "CPLX0-7710[c]"][0][1]) free_30s_mass = np.array( bulk_data[bulk_data["id"] == "CPLX0-3953[c]"][0][1] ) tet_mass = param_store.get(("tetracycline", "mass")).magnitude tet_mass = np.array([0, 0, 0, 0, 0, 0, tet_mass, 0, 0]) bulk_data = np.append( bulk_data, np.array( [ ("marR-tet[c]",) + (marR_mass + tet_mass,), ("tetracycline[p]",) + (tet_mass,), ("tetracycline[c]",) + (tet_mass,), ("CPLX0-3953-tetracycline[c]",) + (free_30s_mass + tet_mass,), ], dtype=bulk_data.dtype, ), ) bulk_units = bulk_mol_alias.bulk_data.fullUnits() bulk_mol_alias.bulk_data = UnitStructArray(bulk_data, bulk_units) # Add equilibrium reaction for marR-tetracycline and # reinitialize self.sim_data.process.equilibrium variables stoich_matrix_shape = eq_alias._stoichMatrix.shape eq_alias._stoichMatrixI = np.concatenate( [ eq_alias._stoichMatrixI, np.arange(stoich_matrix_shape[0], stoich_matrix_shape[0] + 3), ] ) eq_alias._stoichMatrixJ = np.concatenate( [eq_alias._stoichMatrixJ, np.array([stoich_matrix_shape[1]] * 3)] ) eq_alias._stoichMatrixV = np.concatenate( [eq_alias._stoichMatrixV, np.array([-1, -1, 1])] ) eq_alias.molecule_names += [ "CPLX0-7710[c]", "tetracycline[c]", "marR-tet[c]", ] eq_alias.ids_complexes = [ eq_alias.molecule_names[i] for i in np.where(np.any(eq_alias.stoich_matrix() > 0, axis=1))[0] ] eq_alias.rxn_ids += ["marR-tet"] # All existing equilibrium rxns use a forward rate of 1 eq_alias.rates_fwd = np.concatenate([eq_alias.rates_fwd, np.array([1])]) # Existing equilibrium rxns use a default reverse rate of 1e-6 # This happens to nearly perfectly yield full MarR inactivation # at 1.5 mg/L external tetracycline eq_alias.rates_rev = np.concatenate([eq_alias.rates_rev, np.array([1e-6])]) # Mass balance matrix eq_alias._stoichMatrixMass = np.concatenate( [ eq_alias._stoichMatrixMass, np.array( [marR_mass.sum(), tet_mass.sum(), (marR_mass + tet_mass).sum()] ), ] ) eq_alias.balance_matrix = eq_alias.stoich_matrix() * eq_alias.mass_matrix() # Find the mass balance of each equation in the balanceMatrix massBalanceArray = eq_alias.mass_balance() # The stoichometric matrix should balance out to numerical zero. assert np.max(np.absolute(massBalanceArray)) < 1e-9 # Build matrices eq_alias._populateDerivativeAndJacobian() eq_alias._stoichMatrix = eq_alias.stoich_matrix() # NEW to vivarium-ecoli # Append new RNA IDs and degradation rates for sRNA-mRNA duplexes if isinstance(process_configs, dict): rnai_data = process_configs.get("ecoli-rna-interference", False) if rnai_data: # Define aliases to reduce code verbosity ts_alias = self.sim_data.process.transcription bulk_mol_alias = self.sim_data.internal_state.bulk_molecules treg_alias = self.sim_data.process.transcription_regulation self.duplex_ids = np.array(rnai_data["duplex_ids"]) n_duplex_rnas = len(self.duplex_ids) duplex_deg_rates = np.array(rnai_data["duplex_deg_rates"]) duplex_km = np.array(rnai_data["duplex_km"]) duplex_na = np.zeros(n_duplex_rnas) # Mark duplexes as miscRNAs so they are degraded appropriately duplex_is_miscRNA = np.ones(n_duplex_rnas, dtype=np.bool_) self.srna_ids = np.array(rnai_data["srna_ids"]) target_ids = np.array(rnai_data["target_ids"]) self.target_tu_ids = np.zeros(len(target_ids), dtype=int) self.binding_probs = np.array(rnai_data["binding_probs"]) # Get duplex length, ACGU content, molecular weight, and sequence duplex_lengths = np.zeros(n_duplex_rnas) duplex_ACGU = np.zeros((n_duplex_rnas, 4)) duplex_mw = np.zeros(n_duplex_rnas) rna_data = ts_alias.rna_data.fullArray() rna_units = ts_alias.rna_data.fullUnits() rna_sequences = ts_alias.transcription_sequences duplex_sequences = np.full((n_duplex_rnas, rna_sequences.shape[1]), -1) for i, (srna_id, target_id) in enumerate( zip(self.srna_ids, target_ids) ): # Use first match for each sRNA and target mRNA srna_tu_id = np.where(rna_data["id"] == srna_id)[0][0] self.target_tu_ids[i] = np.where(rna_data["id"] == target_id)[0][0] duplex_ACGU[i] = ( rna_data["counts_ACGU"][srna_tu_id] + rna_data["counts_ACGU"][self.target_tu_ids[i]] ) duplex_mw[i] = ( rna_data["mw"][srna_tu_id] + rna_data["mw"][self.target_tu_ids[i]] ) srna_length = rna_data["length"][srna_tu_id] target_length = rna_data["length"][self.target_tu_ids[i]] duplex_lengths[i] = srna_length + target_length if duplex_lengths[i] > duplex_sequences.shape[1]: # Extend columns in sequence arrays to accomodate duplexes # where the sum of the RNA lengths > # of columns extend_length = duplex_lengths[i] - duplex_sequences.shape[1] extend_duplex_sequences = np.full( (duplex_sequences.shape[0], extend_length), -1, dtype=duplex_sequences.dtype, ) duplex_sequences = np.append( duplex_sequences, extend_duplex_sequences, axis=1 ) extend_rna_sequences = np.full( (rna_sequences.shape[0], extend_length), -1, dtype=rna_sequences.dtype, ) rna_sequences = np.append( rna_sequences, extend_rna_sequences, axis=1 ) duplex_sequences[i, :srna_length] = rna_sequences[srna_tu_id][ :srna_length ] duplex_sequences[i, srna_length : srna_length + target_length] = ( rna_sequences[self.target_tu_ids[i]][:target_length] ) # Make duplex metadata visible to all RNA-related processes old_n_rnas = rna_data.shape[0] rna_data = np.resize(rna_data, old_n_rnas + n_duplex_rnas) rna_sequences = np.resize( rna_sequences, (old_n_rnas + n_duplex_rnas, rna_sequences.shape[1]) ) for i, new_rna in enumerate( zip( self.duplex_ids, duplex_deg_rates, duplex_na, duplex_lengths, duplex_ACGU, duplex_mw, duplex_na, duplex_na, duplex_km, duplex_na, duplex_na, duplex_na, duplex_na, duplex_is_miscRNA, duplex_na, duplex_na, duplex_na, duplex_na, duplex_na, duplex_na, ) ): rna_data[old_n_rnas + i] = new_rna rna_sequences[old_n_rnas + i] = duplex_sequences[i] ts_alias.transcription_sequences = rna_sequences ts_alias.rna_data = UnitStructArray(rna_data, rna_units) # Add bulk mass data for duplexes bulk_data = bulk_mol_alias.bulk_data.fullArray() bulk_units = bulk_mol_alias.bulk_data.fullUnits() old_n_bulk = bulk_data.shape[0] bulk_data = np.resize(bulk_data, bulk_data.shape[0] + n_duplex_rnas) for i, duplex in enumerate(self.duplex_ids): duplex_submasses = np.zeros(9) duplex_submasses[2] = duplex_mw[i] bulk_data[old_n_bulk + i] = (duplex, duplex_submasses) bulk_mol_alias.bulk_data = UnitStructArray(bulk_data, bulk_units) # Add filler transcription data for duplex RNAs to prevent errors treg_alias.basal_prob = np.append(treg_alias.basal_prob, 0) treg_alias.delta_prob["shape"] = ( treg_alias.delta_prob["shape"][0] + 1, treg_alias.delta_prob["shape"][1], ) # Set flag so miscRNA duplexes are degraded together with mRNAs self.degrade_misc = True # Resize cistron-TU mapping matrix curr_shape = ts_alias.cistron_tu_mapping_matrix._shape ts_alias.cistron_tu_mapping_matrix._shape = ( curr_shape[0], curr_shape[1] + n_duplex_rnas, ) # Add duplexes to RNA synth prob calculations ts_alias.exp_free = np.concatenate( [ts_alias.exp_free, [0] * n_duplex_rnas] ) ts_alias.exp_ppgpp = np.concatenate( [ts_alias.exp_ppgpp, [0] * n_duplex_rnas] ) # NEW to vivarium-ecoli # Add ampicillin to bulk molecules if amp_lysis: bulk_mol_alias = self.sim_data.internal_state.bulk_molecules # Add mass data for ampicillin and hydrolyzed ampicillin bulk_data = bulk_mol_alias.bulk_data.fullArray() amp_mass = param_store.get(("ampicillin", "molar_mass")).magnitude amp_mass = np.array([0, 0, 0, 0, 0, 0, amp_mass, 0, 0]) amp_hydro_mass = amp_mass.copy() # Include molar mass of water added during hydrolysis amp_hydro_mass[6] += 18 bulk_data = np.append( bulk_data, np.array( [ ("ampicillin[p]",) + (amp_mass,), ("ampicillin_hydrolyzed[p]",) + (amp_hydro_mass,), ], dtype=bulk_data.dtype, ), ) bulk_units = bulk_mol_alias.bulk_data.fullUnits() bulk_mol_alias.bulk_data = UnitStructArray(bulk_data, bulk_units)
[docs] def get_monomer_counts_indices(self, names): """Given a list of monomer names without location tags, this returns the indices of those monomers in the monomer_counts listener array. The "id" column of reconstruction/ecoli/flat/proteins.tsv contains nearly all supported monomer names.""" monomer_ids = self.sim_data.process.translation.monomer_data["id"] # Strip location string (e.g. [c]) monomer_ids = np.array( [re.split(r"\[.\]", monomer)[0] for monomer in monomer_ids] ) return [int(np.where(monomer_ids == name)[0][0]) for name in names]
[docs] def get_mrna_counts_indices(self, names): """Given a list of mRNA names without location tags, this returns the indices of those mRNAs in the mRNA_counts listener array. The "id" column of reconstruction/ecoli/flat/rnas.tsv contains nearly all supported mRNA names.""" is_mrna = self.sim_data.process.transcription.rna_data["is_mRNA"] mrna_ids = self.sim_data.process.transcription.rna_data["id"][is_mrna] # Strip location string (e.g. [c]) mrna_ids = np.array([re.split(r"\[.\]", mrna)[0] for mrna in mrna_ids]) return [int(np.where(mrna_ids == name)[0][0]) for name in names]
[docs] def get_rna_indices(self, names): """Given a list of RNA names without location tags, this returns the TU indices of those RNAs (for rna_init_events and rna_synth_prob). The "id" column of reconstruction/ecoli/flat/rnas.tsv contains nearly all supported RNA names.""" rna_ids = self.sim_data.process.transcription.rna_data["id"] # Strip location string (e.g. [c]) rna_ids = np.array([re.split(r"\[.\]", mrna)[0] for mrna in rna_ids]) return [int(np.where(rna_ids == name)[0][0]) for name in names]
[docs] def _seedFromName(self, name): return binascii.crc32(name.encode("utf-8"), self.seed) & 0xFFFFFFFF
[docs] def get_config_by_name(self, name, time_step=1): name_config_mapping = { "ecoli-tf-binding": self.get_tf_config, "ecoli-transcript-initiation": self.get_transcript_initiation_config, "ecoli-transcript-elongation": self.get_transcript_elongation_config, "ecoli-rna-degradation": self.get_rna_degradation_config, "ecoli-polypeptide-initiation": self.get_polypeptide_initiation_config, "ecoli-polypeptide-elongation": self.get_polypeptide_elongation_config, "ecoli-complexation": self.get_complexation_config, "ecoli-two-component-system": self.get_two_component_system_config, "ecoli-equilibrium": self.get_equilibrium_config, "ecoli-protein-degradation": self.get_protein_degradation_config, "ecoli-metabolism": self.get_metabolism_config, "ecoli-metabolism-redux": self.get_metabolism_redux_config, "ecoli-metabolism-redux-classic": self.get_metabolism_redux_config, "ecoli-chromosome-replication": self.get_chromosome_replication_config, "ecoli-mass": self.get_mass_config, "ecoli-mass-listener": self.get_mass_listener_config, "post-division-mass-listener": self.get_mass_listener_config, "RNA_counts_listener": self.get_rna_counts_listener_config, "monomer_counts_listener": self.get_monomer_counts_listener_config, "rna_synth_prob_listener": self.get_rna_synth_prob_listener_config, "allocator": self.get_allocator_config, "ecoli-chromosome-structure": self.get_chromosome_structure_config, "ecoli-rna-interference": self.get_rna_interference_config, "tetracycline-ribosome-equilibrium": self.get_tetracycline_ribosome_equilibrium_config, "ecoli-rna-maturation": self.get_rna_maturation_config, "ecoli-tf-unbinding": self.get_tf_unbinding_config, "dna_supercoiling_listener": self.get_dna_supercoiling_listener_config, "ribosome_data_listener": self.get_ribosome_data_listener_config, "rnap_data_listener": self.get_rnap_data_listener_config, "unique_molecule_counts": self.get_unique_molecule_counts_config, "exchange_data": self.get_exchange_data_config, "media_update": self.get_media_update_config, "bulk-timeline": self.get_bulk_timeline_config, } try: return name_config_mapping[name](time_step=time_step) except KeyError: raise KeyError( f"Process of name {name} is not known to LoadSimData.get_config_by_name" )
[docs] def get_chromosome_replication_config(self, time_step=1): get_dna_critical_mass = self.sim_data.mass.get_dna_critical_mass doubling_time = self.sim_data.condition_to_doubling_time[ self.sim_data.condition ] replisome_trimer_subunit_masses = np.vstack( [ self.sim_data.getter.get_submass_array(x).asNumber( units.fg / units.count ) for x in self.sim_data.molecule_groups.replisome_trimer_subunits ] ) replisome_monomer_subunit_masses = np.vstack( [ self.sim_data.getter.get_submass_array(x).asNumber( units.fg / units.count ) for x in self.sim_data.molecule_groups.replisome_monomer_subunits ] ) replisome_mass_array = 3 * replisome_trimer_subunit_masses.sum( axis=0 ) + replisome_monomer_subunit_masses.sum(axis=0) chromosome_replication_config = { "time_step": time_step, "max_time_step": self.sim_data.process.replication.max_time_step, "get_dna_critical_mass": get_dna_critical_mass, "criticalInitiationMass": get_dna_critical_mass(doubling_time), "nutrientToDoublingTime": self.sim_data.nutrient_to_doubling_time, "replichore_lengths": self.sim_data.process.replication.replichore_lengths, "sequences": self.sim_data.process.replication.replication_sequences, "polymerized_dntp_weights": self.sim_data.process.replication.replication_monomer_weights, "replication_coordinate": self.sim_data.process.transcription.rna_data[ "replication_coordinate" ], "D_period": self.sim_data.process.replication.d_period.asNumber(units.s), "replisome_protein_mass": replisome_mass_array.sum(), "no_child_place_holder": self.sim_data.process.replication.no_child_place_holder, "basal_elongation_rate": self.sim_data.process.replication.basal_elongation_rate, "make_elongation_rates": self.sim_data.process.replication.make_elongation_rates, # sim options "mechanistic_replisome": self.mechanistic_replisome, # molecules "replisome_trimers_subunits": self.sim_data.molecule_groups.replisome_trimer_subunits, "replisome_monomers_subunits": self.sim_data.molecule_groups.replisome_monomer_subunits, "dntps": self.sim_data.molecule_groups.dntps, "ppi": [self.sim_data.molecule_ids.ppi], # random state "seed": self._seedFromName("ChromosomeReplication"), "submass_indices": self.submass_indices, } return chromosome_replication_config
[docs] def get_tf_config(self, time_step=1): tf_binding_config = { "time_step": time_step, "tf_ids": self.sim_data.process.transcription_regulation.tf_ids, "rna_ids": self.sim_data.process.transcription.rna_data["id"], "delta_prob": self.sim_data.process.transcription_regulation.delta_prob, "n_avogadro": self.sim_data.constants.n_avogadro, "cell_density": self.sim_data.constants.cell_density, "p_promoter_bound_tf": self.sim_data.process.transcription_regulation.p_promoter_bound_tf, "tf_to_tf_type": self.sim_data.process.transcription_regulation.tf_to_tf_type, "active_to_bound": self.sim_data.process.transcription_regulation.active_to_bound, "get_unbound": self.sim_data.process.equilibrium.get_unbound, "active_to_inactive_tf": self.sim_data.process.two_component_system.active_to_inactive_tf, "bulk_molecule_ids": self.sim_data.internal_state.bulk_molecules.bulk_data[ "id" ], "bulk_mass_data": self.sim_data.internal_state.bulk_molecules.bulk_data[ "mass" ], "seed": self._seedFromName("TfBinding"), "submass_indices": self.submass_indices, "emit_unique": self.emit_unique, } return tf_binding_config
[docs] def get_transcript_initiation_config(self, time_step=1): transcript_initiation_config = { "time_step": time_step, "fracActiveRnapDict": self.sim_data.process.transcription.rnapFractionActiveDict, "rnaLengths": self.sim_data.process.transcription.rna_data["length"], "rnaPolymeraseElongationRateDict": self.sim_data.process.transcription.rnaPolymeraseElongationRateDict, "variable_elongation": self.variable_elongation_transcription, "make_elongation_rates": self.sim_data.process.transcription.make_elongation_rates, "active_rnap_footprint_size": self.sim_data.process.transcription.active_rnap_footprint_size, "basal_prob": self.sim_data.process.transcription_regulation.basal_prob, "delta_prob": self.sim_data.process.transcription_regulation.delta_prob, "get_delta_prob_matrix": self.sim_data.process.transcription_regulation.get_delta_prob_matrix, "perturbations": getattr(self.sim_data, "genetic_perturbations", {}), "rna_data": self.sim_data.process.transcription.rna_data, "idx_rRNA": np.where( self.sim_data.process.transcription.rna_data["is_rRNA"] )[0], "idx_mRNA": np.where( self.sim_data.process.transcription.rna_data["is_mRNA"] )[0], "idx_tRNA": np.where( self.sim_data.process.transcription.rna_data["is_tRNA"] )[0], "idx_rprotein": np.where( self.sim_data.process.transcription.rna_data[ "includes_ribosomal_protein" ] )[0], "idx_rnap": np.where( self.sim_data.process.transcription.rna_data["includes_RNAP"] )[0], "rnaSynthProbFractions": self.sim_data.process.transcription.rnaSynthProbFraction, "rnaSynthProbRProtein": self.sim_data.process.transcription.rnaSynthProbRProtein, "rnaSynthProbRnaPolymerase": self.sim_data.process.transcription.rnaSynthProbRnaPolymerase, "replication_coordinate": self.sim_data.process.transcription.rna_data[ "replication_coordinate" ], "transcription_direction": self.sim_data.process.transcription.rna_data[ "is_forward" ], "n_avogadro": self.sim_data.constants.n_avogadro, "cell_density": self.sim_data.constants.cell_density, "inactive_RNAP": "APORNAP-CPLX[c]", "ppgpp": self.sim_data.molecule_ids.ppGpp, "synth_prob": self.sim_data.process.transcription.synth_prob_from_ppgpp, "copy_number": self.sim_data.process.replication.get_average_copy_number, "ppgpp_regulation": self.ppgpp_regulation, "get_rnap_active_fraction_from_ppGpp": self.sim_data.process.transcription.get_rnap_active_fraction_from_ppGpp, # attenuation "trna_attenuation": self.trna_attenuation, "attenuated_rna_indices": self.sim_data.process.transcription.attenuated_rna_indices, "attenuation_adjustments": self.sim_data.process.transcription.attenuation_basal_prob_adjustments, # random seed "seed": self._seedFromName("TranscriptInitiation"), "emit_unique": self.emit_unique, } return transcript_initiation_config
[docs] def get_transcript_elongation_config(self, time_step=1): transcript_elongation_config = { "time_step": time_step, "max_time_step": self.sim_data.process.transcription.max_time_step, "rnaPolymeraseElongationRateDict": self.sim_data.process.transcription.rnaPolymeraseElongationRateDict, "rnaIds": self.sim_data.process.transcription.rna_data["id"], "rnaLengths": self.sim_data.process.transcription.rna_data[ "length" ].asNumber(), "rnaSequences": self.sim_data.process.transcription.transcription_sequences, "ntWeights": self.sim_data.process.transcription.transcription_monomer_weights, "endWeight": self.sim_data.process.transcription.transcription_end_weight, "replichore_lengths": self.sim_data.process.replication.replichore_lengths, "is_mRNA": self.sim_data.process.transcription.rna_data["is_mRNA"], "ppi": self.sim_data.molecule_ids.ppi, "inactive_RNAP": "APORNAP-CPLX[c]", "ntp_ids": ["ATP[c]", "CTP[c]", "GTP[c]", "UTP[c]"], "variable_elongation": self.variable_elongation_transcription, "make_elongation_rates": self.sim_data.process.transcription.make_elongation_rates, "fragmentBases": self.sim_data.molecule_groups.polymerized_ntps, "charged_trnas": self.sim_data.process.transcription.charged_trna_names, # attenuation "trna_attenuation": self.trna_attenuation, "polymerized_ntps": self.sim_data.molecule_groups.polymerized_ntps, "cell_density": self.sim_data.constants.cell_density, "n_avogadro": self.sim_data.constants.n_avogadro, "get_attenuation_stop_probabilities": self.sim_data.process.transcription.get_attenuation_stop_probabilities, "attenuated_rna_indices": self.sim_data.process.transcription.attenuated_rna_indices, "location_lookup": self.sim_data.process.transcription.attenuation_location, "recycle_stalled_elongation": self.recycle_stalled_elongation, # random seed "seed": self._seedFromName("TranscriptElongation"), "submass_indices": self.submass_indices, "emit_unique": self.emit_unique, } return transcript_elongation_config
[docs] def get_rna_degradation_config(self, time_step=1): transcription = self.sim_data.process.transcription rna_ids = list(transcription.rna_data["id"]) mature_rna_ids = list(transcription.mature_rna_data["id"]) all_rna_ids = rna_ids + mature_rna_ids rna_id_to_index = {rna_id: i for (i, rna_id) in enumerate(all_rna_ids)} cistron_ids = transcription.cistron_data["id"] cistron_id_to_index = { cistron_id: i for (i, cistron_id) in enumerate(cistron_ids) } rna_degradation_config = { "time_step": time_step, "rna_ids": rna_ids, "mature_rna_ids": mature_rna_ids, "cistron_ids": cistron_ids, "cistron_tu_mapping_matrix": transcription.cistron_tu_mapping_matrix, "mature_rna_cistron_indexes": np.array( [cistron_id_to_index[rna_id[:-3]] for rna_id in mature_rna_ids] ), "all_rna_ids": all_rna_ids, "n_total_RNAs": len(all_rna_ids), "n_avogadro": self.sim_data.constants.n_avogadro, "cell_density": self.sim_data.constants.cell_density, "endoRNase_ids": self.sim_data.process.rna_decay.endoRNase_ids, "exoRNase_ids": self.sim_data.molecule_groups.exoRNases, "kcat_exoRNase": self.sim_data.constants.kcat_exoRNase, "Kcat_endoRNases": self.sim_data.process.rna_decay.kcats, "charged_trna_names": transcription.charged_trna_names, "uncharged_trna_indexes": np.array( [ rna_id_to_index[trna_id] for trna_id in transcription.uncharged_trna_names ] ), "rna_deg_rates": (1 / units.s) * np.concatenate( ( transcription.rna_data["deg_rate"].asNumber(1 / units.s), transcription.mature_rna_data["deg_rate"].asNumber(1 / units.s), ) ), # All mature RNAs are not mRNAs "is_mRNA": np.concatenate( ( transcription.rna_data["is_mRNA"].astype(np.int64), np.zeros(len(transcription.mature_rna_data), np.int64), ) ), "is_rRNA": np.concatenate( ( transcription.rna_data["is_rRNA"].astype(np.int64), transcription.mature_rna_data["is_rRNA"].astype(np.int64), ) ), "is_tRNA": np.concatenate( ( transcription.rna_data["is_tRNA"].astype(np.int64), transcription.mature_rna_data["is_tRNA"].astype(np.int64), ) ), # NEW to vivarium-ecoli, used to degrade duplexes from RNAi "is_miscRNA": np.concatenate( ( transcription.rna_data["is_miscRNA"].astype(np.int64), np.array( [False] * len(transcription.mature_rna_data), dtype=np.int64 ), ) ), "degrade_misc": self.degrade_misc, # End of new code # Load lengths and nucleotide counts for all degradable RNAs "rna_lengths": np.concatenate( ( transcription.rna_data["length"].asNumber(), transcription.mature_rna_data["length"].asNumber(), ) ), "nt_counts": np.concatenate( ( transcription.rna_data["counts_ACGU"].asNumber(units.nt), transcription.mature_rna_data["counts_ACGU"].asNumber(units.nt), ) ), # Load bulk molecule names "polymerized_ntp_ids": self.sim_data.molecule_groups.polymerized_ntps, "water_id": self.sim_data.molecule_ids.water, "ppi_id": self.sim_data.molecule_ids.ppi, "proton_id": self.sim_data.molecule_ids.proton, "nmp_ids": self.sim_data.molecule_groups.nmps, "rrfa_idx": rna_id_to_index["RRFA-RRNA[c]"], "rrla_idx": rna_id_to_index["RRLA-RRNA[c]"], "rrsa_idx": rna_id_to_index["RRSA-RRNA[c]"], "ribosome30S": self.sim_data.molecule_ids.s30_full_complex, "ribosome50S": self.sim_data.molecule_ids.s50_full_complex, # Load Michaelis-Menten constants fitted to recapitulate # first-order RNA decay model "Kms": (units.mol / units.L) * np.concatenate( ( transcription.rna_data["Km_endoRNase"].asNumber( units.mol / units.L ), transcription.mature_rna_data["Km_endoRNase"].asNumber( units.mol / units.L ), ) ), "seed": self._seedFromName("RnaDegradation"), "emit_unique": self.emit_unique, } return rna_degradation_config
[docs] def get_polypeptide_initiation_config(self, time_step=1): polypeptide_initiation_config = { "time_step": time_step, "protein_lengths": self.sim_data.process.translation.monomer_data[ "length" ].asNumber(), "translation_efficiencies": normalize( self.sim_data.process.translation.translation_efficiencies_by_monomer ), "active_ribosome_fraction": self.sim_data.process.translation.ribosomeFractionActiveDict, "elongation_rates": self.sim_data.process.translation.ribosomeElongationRateDict, "variable_elongation": self.variable_elongation_translation, "make_elongation_rates": self.sim_data.process.translation.make_elongation_rates, "rna_id_to_cistron_indexes": self.sim_data.process.transcription.rna_id_to_cistron_indexes, "cistron_start_end_pos_in_tu": self.sim_data.process.transcription.cistron_start_end_pos_in_tu, "tu_ids": self.sim_data.process.transcription.rna_data["id"], "active_ribosome_footprint_size": self.sim_data.process.translation.active_ribosome_footprint_size, "cistron_to_monomer_mapping": self.sim_data.relation.cistron_to_monomer_mapping, "cistron_tu_mapping_matrix": self.sim_data.process.transcription.cistron_tu_mapping_matrix, "monomer_index_to_cistron_index": { i: self.sim_data.process.transcription._cistron_id_to_index[ monomer["cistron_id"] ] for (i, monomer) in enumerate( self.sim_data.process.translation.monomer_data ) }, "monomer_index_to_tu_indexes": self.sim_data.relation.monomer_index_to_tu_indexes, "ribosome30S": self.sim_data.molecule_ids.s30_full_complex, "ribosome50S": self.sim_data.molecule_ids.s50_full_complex, "seed": self._seedFromName("PolypeptideInitiation"), "monomer_ids": self.sim_data.process.translation.monomer_data["id"], "emit_unique": self.emit_unique, } return polypeptide_initiation_config
[docs] def get_polypeptide_elongation_config(self, time_step=1): constants = self.sim_data.constants molecule_ids = self.sim_data.molecule_ids translation = self.sim_data.process.translation transcription = self.sim_data.process.transcription metabolism = self.sim_data.process.metabolism polypeptide_elongation_config = { "time_step": time_step, # simulation options "aa_supply_in_charging": self.aa_supply_in_charging, "adjust_timestep_for_charging": self.adjust_timestep_for_charging, "mechanistic_translation_supply": self.mechanistic_translation_supply, "mechanistic_aa_transport": self.mechanistic_aa_transport, "ppgpp_regulation": self.ppgpp_regulation, "disable_ppgpp_elongation_inhibition": self.disable_ppgpp_elongation_inhibition, "variable_elongation": self.variable_elongation_translation, "translation_supply": self.translation_supply, "trna_charging": self.trna_charging, # base parameters "max_time_step": translation.max_time_step, "n_avogadro": constants.n_avogadro, "proteinIds": translation.monomer_data["id"], "proteinLengths": translation.monomer_data["length"].asNumber(), "proteinSequences": translation.translation_sequences, "aaWeightsIncorporated": translation.translation_monomer_weights, "endWeight": translation.translation_end_weight, "make_elongation_rates": translation.make_elongation_rates, "next_aa_pad": translation.next_aa_pad, "ribosomeElongationRate": float( self.sim_data.growth_rate_parameters.ribosomeElongationRate.asNumber( units.aa / units.s ) ), # Amino acid supply calculations "translation_aa_supply": self.sim_data.translation_supply_rate, "import_threshold": self.sim_data.external_state.import_constraint_threshold, # Data structures for charging "aa_from_trna": transcription.aa_from_trna, # Growth associated maintenance energy requirements for elongations "gtpPerElongation": constants.gtp_per_translation, # Bulk molecules "ribosome30S": self.sim_data.molecule_ids.s30_full_complex, "ribosome50S": self.sim_data.molecule_ids.s50_full_complex, "amino_acids": self.sim_data.molecule_groups.amino_acids, # parameters for specific elongation models "aa_exchange_names": np.array( [ self.sim_data.external_state.env_to_exchange_map[aa[:-3]] for aa in self.sim_data.molecule_groups.amino_acids ] ), "basal_elongation_rate": self.sim_data.constants.ribosome_elongation_rate_basal.asNumber( units.aa / units.s ), "ribosomeElongationRateDict": self.sim_data.process.translation.ribosomeElongationRateDict, "uncharged_trna_names": self.sim_data.process.transcription.uncharged_trna_names, "proton": self.sim_data.molecule_ids.proton, "water": self.sim_data.molecule_ids.water, "cellDensity": constants.cell_density, "elongation_max": ( constants.ribosome_elongation_rate_max if self.variable_elongation_translation else constants.ribosome_elongation_rate_basal ), "aa_from_synthetase": transcription.aa_from_synthetase, "charging_stoich_matrix": transcription.charging_stoich_matrix(), "charged_trna_names": transcription.charged_trna_names, "charging_molecule_names": transcription.charging_molecules, "synthetase_names": transcription.synthetase_names, "ppgpp_reaction_metabolites": metabolism.ppgpp_reaction_metabolites, "elong_rate_by_ppgpp": self.sim_data.growth_rate_parameters.get_ribosome_elongation_rate_by_ppgpp, "rela": molecule_ids.RelA, "spot": molecule_ids.SpoT, "ppgpp": molecule_ids.ppGpp, "kS": constants.synthetase_charging_rate.asNumber(1 / units.s), "KMaa": transcription.aa_kms.asNumber(MICROMOLAR_UNITS), "KMtf": transcription.trna_kms.asNumber(MICROMOLAR_UNITS), "krta": constants.Kdissociation_charged_trna_ribosome.asNumber( MICROMOLAR_UNITS ), "krtf": constants.Kdissociation_uncharged_trna_ribosome.asNumber( MICROMOLAR_UNITS ), "unit_conversion": metabolism.get_amino_acid_conc_conversion( MICROMOLAR_UNITS ), "KD_RelA": transcription.KD_RelA.asNumber(MICROMOLAR_UNITS), "k_RelA": constants.k_RelA_ppGpp_synthesis.asNumber(1 / units.s), "k_SpoT_syn": constants.k_SpoT_ppGpp_synthesis.asNumber(1 / units.s), "k_SpoT_deg": constants.k_SpoT_ppGpp_degradation.asNumber( 1 / (MICROMOLAR_UNITS * units.s) ), "KI_SpoT": transcription.KI_SpoT.asNumber(MICROMOLAR_UNITS), "ppgpp_reaction_stoich": metabolism.ppgpp_reaction_stoich, "synthesis_index": metabolism.ppgpp_reaction_names.index( metabolism.ppgpp_synthesis_reaction ), "degradation_index": metabolism.ppgpp_reaction_names.index( metabolism.ppgpp_degradation_reaction ), "aa_supply_scaling": metabolism.aa_supply_scaling, "aa_enzymes": metabolism.aa_enzymes, "amino_acid_synthesis": metabolism.amino_acid_synthesis, "amino_acid_import": metabolism.amino_acid_import, "amino_acid_export": metabolism.amino_acid_export, "aa_importers": metabolism.aa_importer_names, "aa_exporters": metabolism.aa_exporter_names, "get_pathway_enzyme_counts_per_aa": metabolism.get_pathway_enzyme_counts_per_aa, "import_constraint_threshold": self.sim_data.external_state.import_constraint_threshold, "seed": self._seedFromName("PolypeptideElongation"), "emit_unique": self.emit_unique, } return polypeptide_elongation_config
[docs] def get_complexation_config(self, time_step=1): complexation_config = { "time_step": time_step, "stoichiometry": self.sim_data.process.complexation.stoich_matrix() .astype(np.int64) .T, "rates": self.sim_data.process.complexation.rates, "molecule_names": self.sim_data.process.complexation.molecule_names, "seed": self._seedFromName("Complexation"), "reaction_ids": self.sim_data.process.complexation.ids_reactions, "complex_ids": self.sim_data.process.complexation.ids_complexes, "emit_unique": self.emit_unique, } return complexation_config
[docs] def get_two_component_system_config(self, time_step=1): two_component_system_config = { "time_step": time_step, "jit": False, # TODO -- wcEcoli has this in 1/mmol, why? "n_avogadro": self.sim_data.constants.n_avogadro.asNumber(1 / units.mmol), "cell_density": self.sim_data.constants.cell_density.asNumber( units.g / units.L ), "moleculesToNextTimeStep": self.sim_data.process.two_component_system.molecules_to_next_time_step, "moleculeNames": self.sim_data.process.two_component_system.molecule_names, "seed": self._seedFromName("TwoComponentSystem"), "emit_unique": self.emit_unique, } # return two_component_system_config, stoichI, stoichJ, stoichV return two_component_system_config
[docs] def get_equilibrium_config(self, time_step=1): equilibrium_config = { "time_step": time_step, "jit": False, "n_avogadro": self.sim_data.constants.n_avogadro.asNumber(1 / units.mol), "cell_density": self.sim_data.constants.cell_density.asNumber( units.g / units.L ), "stoichMatrix": self.sim_data.process.equilibrium.stoich_matrix().astype( np.int64 ), "fluxesAndMoleculesToSS": self.sim_data.process.equilibrium.fluxes_and_molecules_to_SS, "moleculeNames": self.sim_data.process.equilibrium.molecule_names, "seed": self._seedFromName("Equilibrium"), "complex_ids": self.sim_data.process.equilibrium.ids_complexes, "reaction_ids": self.sim_data.process.equilibrium.rxn_ids, "emit_unique": self.emit_unique, } return equilibrium_config
[docs] def get_protein_degradation_config(self, time_step=1): protein_degradation_config = { "time_step": time_step, "raw_degradation_rate": self.sim_data.process.translation.monomer_data[ "deg_rate" ].asNumber(1 / units.s), "water_id": self.sim_data.molecule_ids.water, "amino_acid_ids": self.sim_data.molecule_groups.amino_acids, "amino_acid_counts": self.sim_data.process.translation.monomer_data[ "aa_counts" ].asNumber(), "protein_ids": self.sim_data.process.translation.monomer_data["id"], "protein_lengths": self.sim_data.process.translation.monomer_data[ "length" ].asNumber(), "seed": self._seedFromName("ProteinDegradation"), "emit_unique": self.emit_unique, } return protein_degradation_config
[docs] def get_metabolism_redux_config(self, time_step=1): metabolism = self.sim_data.process.metabolism aa_names = self.sim_data.molecule_groups.amino_acids aa_exchange_names = np.array( [ self.sim_data.external_state.env_to_exchange_map[aa[:-3]] for aa in aa_names ] ) aa_targets_not_updated = {"L-SELENOCYSTEINE[c]"} # Setup for variant that has a fixed change in ppGpp until a concentration is reached if hasattr(self.sim_data, "ppgpp_ramp"): self.sim_data.ppgpp_ramp.set_time(self.total_time) self.sim_data.growth_rate_parameters.get_ppGpp_conc = ( self.sim_data.ppgpp_ramp.get_ppGpp_conc ) # if current_timeline_id is specified by a variant in sim_data, look it up in saved_timelines. if self.sim_data.external_state.current_timeline_id: current_timeline = self.sim_data.external_state.saved_timelines[ self.sim_data.external_state.current_timeline_id ] else: current_timeline = self.media_timeline saved_media = self.sim_data.external_state.saved_media current_concentrations = saved_media[current_timeline[0][1]] # Get import molecules exch_from_conc = self.sim_data.external_state.exchange_data_from_concentrations exchange_data = exch_from_conc(current_concentrations) unconstrained = exchange_data["importUnconstrainedExchangeMolecules"] constrained = exchange_data["importConstrainedExchangeMolecules"] imports = set(unconstrained) | set(constrained) metabolism_config = { "time_step": time_step, # stoich "stoich_dict": metabolism.reaction_stoich, "maintenance_reaction": metabolism.maintenance_reaction, "reaction_catalysts": metabolism.reaction_catalysts, "get_mass": self.sim_data.getter.get_mass, # wcEcoli parameters "get_import_constraints": self.sim_data.external_state.get_import_constraints, "aa_targets_not_updated": aa_targets_not_updated, "import_constraint_threshold": self.sim_data.external_state.import_constraint_threshold, "exchange_molecules": self.sim_data.external_state.all_external_exchange_molecules, # these are options given to the wholecell.sim.simulation "use_trna_charging": self.trna_charging, "include_ppgpp": (not self.ppgpp_regulation) or (not self.trna_charging) or getattr(metabolism, "force_constant_ppgpp", False), "mechanistic_aa_transport": self.mechanistic_aa_transport, # variables "avogadro": self.sim_data.constants.n_avogadro, "cell_density": self.sim_data.constants.cell_density, "nutrient_to_doubling_time": self.sim_data.nutrient_to_doubling_time, "dark_atp": self.sim_data.constants.darkATP, "non_growth_associated_maintenance": self.sim_data.constants.non_growth_associated_maintenance, "cell_dry_mass_fraction": self.sim_data.mass.cell_dry_mass_fraction, "ppgpp_id": self.sim_data.molecule_ids.ppGpp, "get_ppGpp_conc": self.sim_data.growth_rate_parameters.get_ppGpp_conc, "get_masses": self.sim_data.getter.get_masses, "kinetic_constraint_reactions": metabolism.kinetic_constraint_reactions, "doubling_time": self.sim_data.condition_to_doubling_time[ self.sim_data.condition ], "get_biomass_as_concentrations": self.sim_data.mass.getBiomassAsConcentrations, "aa_names": self.sim_data.molecule_groups.amino_acids, "linked_metabolites": metabolism.concentration_updates.linked_metabolites, "aa_exchange_names": aa_exchange_names, "removed_aa_uptake": np.array( [aa in aa_targets_not_updated for aa in aa_exchange_names] ), "constraints_to_disable": metabolism.constraints_to_disable, "secretion_penalty_coeff": metabolism.secretion_penalty_coeff, "kinetic_objective_weight": metabolism.kinetic_objective_weight, "kinetic_objective_weight_in_range": metabolism.kinetic_objective_weight_in_range, # these values came from the initialized environment state "current_timeline": current_timeline, "media_id": current_timeline[0][1], "imports": imports, # methods "concentration_updates": metabolism.concentration_updates, "exchange_data_from_media": self.sim_data.external_state.exchange_data_from_media, "get_kinetic_constraints": metabolism.get_kinetic_constraints, "exchange_constraints": metabolism.exchange_constraints, # ports schema "catalyst_ids": metabolism.catalyst_ids, "kinetic_constraint_enzymes": metabolism.kinetic_constraint_enzymes, "kinetic_constraint_substrates": metabolism.kinetic_constraint_substrates, # Used to create conversion matrix that compiles individual fluxes # in the FBA solution to the fluxes of base reactions "base_reaction_ids": metabolism.base_reaction_ids, "fba_reaction_ids_to_base_reaction_ids": metabolism.reaction_id_to_base_reaction_id, } # TODO Create new config-get with only necessary parts. return metabolism_config
[docs] def get_metabolism_config(self, time_step=1): # bad_rxns = ["RXN-12440", "TRANS-RXN-121", "TRANS-RXN-300"] # for rxn in bad_rxns: # self.sim_data.process.metabolism.reaction_stoich.pop(rxn, None) # self.sim_data.process.metabolism.reaction_catalysts.pop(rxn, None) # self.sim_data.process.metabolism.reactions_with_catalyst.remove(rxn) \ # if rxn in self.sim_data.process.metabolism.reactions_with_catalyst else None metabolism = self.sim_data.process.metabolism aa_names = self.sim_data.molecule_groups.amino_acids aa_exchange_names = np.array( [ self.sim_data.external_state.env_to_exchange_map[aa[:-3]] for aa in aa_names ] ) aa_targets_not_updated = {"L-SELENOCYSTEINE[c]"} # Setup for variant that has a fixed change in ppGpp until a concentration is reached if hasattr(self.sim_data, "ppgpp_ramp"): self.sim_data.ppgpp_ramp.set_time(self.total_time) self.sim_data.growth_rate_parameters.get_ppGpp_conc = ( self.sim_data.ppgpp_ramp.get_ppGpp_conc ) # if current_timeline_id is specified by a variant in sim_data, look it up in saved_timelines. if self.sim_data.external_state.current_timeline_id: current_timeline = self.sim_data.external_state.saved_timelines[ self.sim_data.external_state.current_timeline_id ] else: current_timeline = self.media_timeline saved_media = self.sim_data.external_state.saved_media current_concentrations = saved_media[current_timeline[0][1]] # Get import molecules exch_from_conc = self.sim_data.external_state.exchange_data_from_concentrations exchange_data = exch_from_conc(current_concentrations) unconstrained = exchange_data["importUnconstrainedExchangeMolecules"] constrained = exchange_data["importConstrainedExchangeMolecules"] imports = set(unconstrained) | set(constrained) metabolism_config = { "time_step": time_step, # metabolism parameters "stoichiometry": metabolism.reaction_stoich, "catalyst_ids": metabolism.catalyst_ids, "concentration_updates": metabolism.concentration_updates, "maintenance_reaction": metabolism.maintenance_reaction, # wcEcoli parameters "get_import_constraints": self.sim_data.external_state.get_import_constraints, "nutrientToDoublingTime": self.sim_data.nutrient_to_doubling_time, "aa_names": aa_names, "aa_targets_not_updated": aa_targets_not_updated, "import_constraint_threshold": self.sim_data.external_state.import_constraint_threshold, "exchange_molecules": self.sim_data.external_state.all_external_exchange_molecules, # these are options given to the wholecell.sim.simulation "use_trna_charging": self.trna_charging, "include_ppgpp": (not self.ppgpp_regulation) or (not self.trna_charging) or getattr(metabolism, "force_constant_ppgpp", False), "mechanistic_aa_transport": self.mechanistic_aa_transport, # these values came from the initialized environment state "current_timeline": current_timeline, "media_id": current_timeline[0][1], "imports": imports, "metabolism": metabolism, "ngam": self.sim_data.constants.non_growth_associated_maintenance, "avogadro": self.sim_data.constants.n_avogadro, "cell_density": self.sim_data.constants.cell_density, "dark_atp": self.sim_data.constants.darkATP, "cell_dry_mass_fraction": self.sim_data.mass.cell_dry_mass_fraction, "get_biomass_as_concentrations": self.sim_data.mass.getBiomassAsConcentrations, "ppgpp_id": self.sim_data.molecule_ids.ppGpp, "get_ppGpp_conc": self.sim_data.growth_rate_parameters.get_ppGpp_conc, "exchange_data_from_media": self.sim_data.external_state.exchange_data_from_media, "get_masses": self.sim_data.getter.get_masses, "doubling_time": self.sim_data.condition_to_doubling_time[ self.sim_data.condition ], "amino_acid_ids": sorted( self.sim_data.amino_acid_code_to_id_ordered.values() ), "seed": self._seedFromName("Metabolism"), "linked_metabolites": metabolism.concentration_updates.linked_metabolites, "aa_exchange_names": aa_exchange_names, "removed_aa_uptake": np.array( [aa in aa_targets_not_updated for aa in aa_exchange_names] ), # TODO: testing, remove later (perhaps after moving change to sim_data) "reduce_murein_objective": False, # Used to create conversion matrix that compiles individual fluxes # in the FBA solution to the fluxes of base reactions "base_reaction_ids": self.sim_data.process.metabolism.base_reaction_ids, "fba_reaction_ids_to_base_reaction_ids": self.sim_data.process.metabolism.reaction_id_to_base_reaction_id, } return metabolism_config
[docs] def get_mass_config(self, time_step=1): bulk_ids = self.sim_data.internal_state.bulk_molecules.bulk_data["id"] molecular_weights = {} for molecule_id in bulk_ids: molecular_weights[molecule_id] = self.sim_data.getter.get_mass( molecule_id ).asNumber(units.fg / units.mol) # unique molecule masses unique_masses = {} uniqueMoleculeMasses = ( self.sim_data.internal_state.unique_molecule.unique_molecule_masses ) for id_, mass in zip(uniqueMoleculeMasses["id"], uniqueMoleculeMasses["mass"]): unique_masses[id_] = (mass / self.sim_data.constants.n_avogadro).asNumber( units.fg ) mass_config = { "molecular_weights": molecular_weights, "unique_masses": unique_masses, "cellDensity": self.sim_data.constants.cell_density.asNumber( units.g / units.L ), "water_id": "WATER[c]", "emit_unique": self.emit_unique, } return mass_config
[docs] def get_mass_listener_config(self, time_step=1): u_masses = self.sim_data.internal_state.unique_molecule.unique_molecule_masses molecule_ids = tuple(sorted(u_masses["id"])) molecule_id_to_mass = {} for id_, mass in zip(u_masses["id"], u_masses["mass"]): molecule_id_to_mass[id_] = ( mass / self.sim_data.constants.n_avogadro ).asNumber(units.fg) molecule_masses = np.array([molecule_id_to_mass[x] for x in molecule_ids]) mass_config = { "cellDensity": self.sim_data.constants.cell_density.asNumber( units.g / units.L ), "bulk_ids": self.sim_data.internal_state.bulk_molecules.bulk_data["id"], "bulk_masses": self.sim_data.internal_state.bulk_molecules.bulk_data[ "mass" ].asNumber(units.fg / units.mol) / self.sim_data.constants.n_avogadro.asNumber(1 / units.mol), "unique_ids": molecule_ids, "unique_masses": molecule_masses, "compartment_abbrev_to_index": self.sim_data.compartment_abbrev_to_index, "expectedDryMassIncreaseDict": self.sim_data.expectedDryMassIncreaseDict, "compartment_indices": { "projection": self.sim_data.compartment_id_to_index[ "CCO-CELL-PROJECTION" ], "cytosol": self.sim_data.compartment_id_to_index["CCO-CYTOSOL"], "extracellular": self.sim_data.compartment_id_to_index[ "CCO-EXTRACELLULAR" ], "flagellum": self.sim_data.compartment_id_to_index["CCO-FLAGELLUM"], "membrane": self.sim_data.compartment_id_to_index["CCO-MEMBRANE"], "outer_membrane": self.sim_data.compartment_id_to_index[ "CCO-OUTER-MEM" ], "periplasm": self.sim_data.compartment_id_to_index["CCO-PERI-BAC"], "pilus": self.sim_data.compartment_id_to_index["CCO-PILUS"], "inner_membrane": self.sim_data.compartment_id_to_index[ "CCO-PM-BAC-NEG" ], }, "compartment_id_to_index": self.sim_data.compartment_id_to_index, "n_avogadro": self.sim_data.constants.n_avogadro, # 1/mol "time_step": time_step, "submass_to_idx": self.sim_data.submass_name_to_index, "condition_to_doubling_time": self.sim_data.condition_to_doubling_time, "condition": self.sim_data.condition, "emit_unique": self.emit_unique, } return mass_config
[docs] def get_rna_counts_listener_config(self, time_step=1): counts_config = { "time_step": time_step, "all_TU_ids": self.sim_data.process.transcription.rna_data["id"], "mRNA_indexes": np.where( self.sim_data.process.transcription.rna_data["is_mRNA"] )[0], "rRNA_indexes": np.where( self.sim_data.process.transcription.rna_data["is_rRNA"] )[0], "all_cistron_ids": self.sim_data.process.transcription.cistron_data["id"], "cistron_is_mRNA": self.sim_data.process.transcription.cistron_data[ "is_mRNA" ], "cistron_is_rRNA": self.sim_data.process.transcription.cistron_data[ "is_rRNA" ], "cistron_tu_mapping_matrix": self.sim_data.process.transcription.cistron_tu_mapping_matrix, "emit_unique": self.emit_unique, } counts_config["mRNA_TU_ids"] = counts_config["all_TU_ids"][ counts_config["mRNA_indexes"] ] counts_config["rRNA_TU_ids"] = counts_config["all_TU_ids"][ counts_config["rRNA_indexes"] ] counts_config["mRNA_cistron_ids"] = counts_config["all_cistron_ids"][ counts_config["cistron_is_mRNA"] ] counts_config["rRNA_cistron_ids"] = counts_config["all_cistron_ids"][ counts_config["cistron_is_rRNA"] ] return counts_config
[docs] def get_monomer_counts_listener_config(self, time_step=1): monomer_counts_config = { "time_step": time_step, # Get IDs of all bulk molecules "bulk_molecule_ids": self.sim_data.internal_state.bulk_molecules.bulk_data[ "id" ], "unique_ids": self.sim_data.internal_state.unique_molecule.unique_molecule_masses[ "id" ], # Get IDs of molecules involved in complexation and equilibrium "complexation_molecule_ids": self.sim_data.process.complexation.molecule_names, "complexation_complex_ids": self.sim_data.process.complexation.ids_complexes, "equilibrium_molecule_ids": self.sim_data.process.equilibrium.molecule_names, "equilibrium_complex_ids": self.sim_data.process.equilibrium.ids_complexes, "monomer_ids": self.sim_data.process.translation.monomer_data[ "id" ].tolist(), # Get IDs of complexed molecules monomers involved in two component system "two_component_system_molecule_ids": list( self.sim_data.process.two_component_system.molecule_names ), "two_component_system_complex_ids": list( self.sim_data.process.two_component_system.complex_to_monomer.keys() ), # Get IDs of ribosome subunits "ribosome_50s_subunits": self.sim_data.process.complexation.get_monomers( self.sim_data.molecule_ids.s50_full_complex ), "ribosome_30s_subunits": self.sim_data.process.complexation.get_monomers( self.sim_data.molecule_ids.s30_full_complex ), # Get IDs of RNA polymerase subunits "rnap_subunits": self.sim_data.process.complexation.get_monomers( self.sim_data.molecule_ids.full_RNAP ), # Get IDs of replisome subunits "replisome_trimer_subunits": self.sim_data.molecule_groups.replisome_trimer_subunits, "replisome_monomer_subunits": self.sim_data.molecule_groups.replisome_monomer_subunits, # Get stoichiometric matrices for complexation, equilibrium, two component system and the # assembly of unique molecules "complexation_stoich": self.sim_data.process.complexation.stoich_matrix_monomers(), "equilibrium_stoich": self.sim_data.process.equilibrium.stoich_matrix_monomers(), "two_component_system_stoich": self.sim_data.process.two_component_system.stoich_matrix_monomers(), "emit_unique": self.emit_unique, } return monomer_counts_config
[docs] def get_allocator_config(self, time_step=1, process_names=None): if not process_names: process_names = [] allocator_config = { "time_step": time_step, "molecule_names": self.sim_data.internal_state.bulk_molecules.bulk_data[ "id" ], # Allocator is built into BulkMolecules container in wcEcoli "seed": self._seedFromName("BulkMolecules"), "process_names": process_names, "custom_priorities": { "ecoli-rna-degradation": 10, "ecoli-protein-degradation": 10, "ecoli-two-component-system": -5, "ecoli-tf-binding": -10, "ecoli-metabolism": -10, }, "emit_unique": self.emit_unique, } return allocator_config
[docs] def get_chromosome_structure_config(self, time_step=1): transcription = self.sim_data.process.transcription mature_rna_ids = transcription.mature_rna_data["id"] unprocessed_rna_indexes = np.where(transcription.rna_data["is_unprocessed"])[0] chromosome_structure_config = { "time_step": time_step, # Load parameters "rna_sequences": transcription.transcription_sequences, "protein_sequences": self.sim_data.process.translation.translation_sequences, "n_TUs": len(transcription.rna_data), "n_TFs": len(self.sim_data.process.transcription_regulation.tf_ids), "rna_ids": transcription.rna_data["id"], "n_amino_acids": len(self.sim_data.molecule_groups.amino_acids), "n_fragment_bases": len(self.sim_data.molecule_groups.polymerized_ntps), "replichore_lengths": self.sim_data.process.replication.replichore_lengths, "relaxed_DNA_base_pairs_per_turn": self.sim_data.process.chromosome_structure.relaxed_DNA_base_pairs_per_turn, "terC_index": self.sim_data.process.chromosome_structure.terC_dummy_molecule_index, "n_mature_rnas": len(mature_rna_ids), "mature_rna_ids": mature_rna_ids, "mature_rna_end_positions": transcription.mature_rna_end_positions, "mature_rna_nt_counts": transcription.mature_rna_data["counts_ACGU"] .asNumber(units.nt) .astype(int), "unprocessed_rna_index_mapping": { rna_index: i for (i, rna_index) in enumerate(unprocessed_rna_indexes) }, "calculate_superhelical_densities": self.superhelical_density, # Get placeholder value for chromosome domains without children "no_child_place_holder": self.sim_data.process.replication.no_child_place_holder, # Load bulk molecule views "inactive_RNAPs": self.sim_data.molecule_ids.full_RNAP, "fragmentBases": self.sim_data.molecule_groups.polymerized_ntps, "ppi": self.sim_data.molecule_ids.ppi, "active_tfs": [ x + "[c]" for x in self.sim_data.process.transcription_regulation.tf_ids ], "ribosome_30S_subunit": self.sim_data.molecule_ids.s30_full_complex, "ribosome_50S_subunit": self.sim_data.molecule_ids.s50_full_complex, "amino_acids": self.sim_data.molecule_groups.amino_acids, "water": self.sim_data.molecule_ids.water, "seed": self._seedFromName("ChromosomeStructure"), "emit_unique": self.emit_unique, } return chromosome_structure_config
[docs] def get_rna_interference_config(self, time_step=1): rna_interference_config = { "time_step": time_step, "srna_ids": self.srna_ids, "target_tu_ids": self.target_tu_ids, "binding_probs": self.binding_probs, "duplex_ids": self.duplex_ids, "ribosome30S": self.sim_data.molecule_ids.s30_full_complex, "ribosome50S": self.sim_data.molecule_ids.s50_full_complex, "seed": self.random_state.randint(RAND_MAX), "emit_unique": self.emit_unique, } return rna_interference_config
[docs] def get_tetracycline_ribosome_equilibrium_config(self, time_step=1): rna_ids = self.sim_data.process.transcription.rna_data["id"] is_trna = self.sim_data.process.transcription.rna_data["is_tRNA"].astype( np.bool_ ) tetracycline_ribosome_equilibrium_config = { "time_step": time_step, "trna_ids": rna_ids[is_trna], # Ensure that a new seed is set upon division "seed": self.random_state.randint(RAND_MAX), "emit_unique": self.emit_unique, } return tetracycline_ribosome_equilibrium_config
[docs] def get_rna_maturation_config(self, time_step=1): transcription = self.sim_data.process.transcription rna_data = transcription.rna_data mature_rna_data = transcription.mature_rna_data config = { "time_step": time_step, # Get matrices and vectors that describe maturation reactions "stoich_matrix": transcription.rna_maturation_stoich_matrix, "enzyme_matrix": transcription.rna_maturation_enzyme_matrix.astype(int), "degraded_nt_counts": transcription.rna_maturation_degraded_nt_counts, # Get rRNA IDs "main_23s_rRNA_id": self.sim_data.molecule_groups.s50_23s_rRNA[0], "main_16s_rRNA_id": self.sim_data.molecule_groups.s30_16s_rRNA[0], "main_5s_rRNA_id": self.sim_data.molecule_groups.s50_5s_rRNA[0], "variant_23s_rRNA_ids": self.sim_data.molecule_groups.s50_23s_rRNA[1:], "variant_16s_rRNA_ids": self.sim_data.molecule_groups.s30_16s_rRNA[1:], "variant_5s_rRNA_ids": self.sim_data.molecule_groups.s50_5s_rRNA[1:], "unprocessed_rna_ids": rna_data["id"][rna_data["is_unprocessed"]], "mature_rna_ids": transcription.mature_rna_data["id"], "rna_maturation_enzyme_ids": transcription.rna_maturation_enzymes, # Other bulk IDs "fragment_bases": self.sim_data.molecule_groups.polymerized_ntps, "ppi": self.sim_data.molecule_ids.ppi, "water": self.sim_data.molecule_ids.water, "nmps": self.sim_data.molecule_groups.nmps, "proton": self.sim_data.molecule_ids.proton, "emit_unique": self.emit_unique, } config["n_required_enzymes"] = config["enzyme_matrix"].sum(axis=1) config["n_ppi_added"] = config["stoich_matrix"].toarray().sum(axis=0) - 1 # Calculate number of NMPs that should be added when consolidating rRNA # molecules counts_ACGU = np.vstack( ( rna_data["counts_ACGU"].asNumber(units.nt), mature_rna_data["counts_ACGU"].asNumber(units.nt), ) ) rna_id_to_index = { rna_id: i for i, rna_id in enumerate(chain(rna_data["id"], mature_rna_data["id"])) } def calculate_delta_nt_counts(main_id, variant_ids): main_index = rna_id_to_index[main_id] variant_indexes = np.array( [rna_id_to_index[rna_id] for rna_id in variant_ids] ) delta_nt_counts = ( counts_ACGU[variant_indexes, :] - counts_ACGU[main_index, :] ) return delta_nt_counts config["delta_nt_counts_23s"] = calculate_delta_nt_counts( config["main_23s_rRNA_id"], config["variant_23s_rRNA_ids"] ) config["delta_nt_counts_16s"] = calculate_delta_nt_counts( config["main_16s_rRNA_id"], config["variant_16s_rRNA_ids"] ) config["delta_nt_counts_5s"] = calculate_delta_nt_counts( config["main_5s_rRNA_id"], config["variant_5s_rRNA_ids"] ) return config
[docs] def get_tf_unbinding_config(self, time_step=1): config = { "time_step": time_step, "tf_ids": self.sim_data.process.transcription_regulation.tf_ids, "submass_indices": self.submass_indices, "emit_unique": self.emit_unique, } # Build array of active TF masses bulk_ids = self.sim_data.internal_state.bulk_molecules.bulk_data["id"] tf_indexes = [ np.where(bulk_ids == tf_id + "[c]")[0][0] for tf_id in config["tf_ids"] ] config["active_tf_masses"] = ( self.sim_data.internal_state.bulk_molecules.bulk_data["mass"][tf_indexes] / self.sim_data.constants.n_avogadro ).asNumber(units.fg) return config
[docs] def get_rna_synth_prob_listener_config(self, time_step=1): return { "time_step": time_step, "gene_ids": self.sim_data.process.transcription.cistron_data["gene_id"], "rna_ids": self.sim_data.process.transcription.rna_data["id"], "tf_ids": self.sim_data.process.transcription_regulation.tf_ids, "cistron_ids": self.sim_data.process.transcription.cistron_data["gene_id"], "cistron_tu_mapping_matrix": self.sim_data.process.transcription.cistron_tu_mapping_matrix, "emit_unique": self.emit_unique, }
[docs] def get_dna_supercoiling_listener_config(self, time_step=1): return { "time_step": time_step, "relaxed_DNA_base_pairs_per_turn": self.sim_data.process.chromosome_structure.relaxed_DNA_base_pairs_per_turn, "emit_unique": self.emit_unique, }
[docs] def get_unique_molecule_counts_config(self, time_step=1): return { "time_step": time_step, "unique_ids": self.sim_data.internal_state.unique_molecule.unique_molecule_masses[ "id" ], "emit_unique": self.emit_unique, }
[docs] def get_ribosome_data_listener_config(self, time_step=1): return { "time_step": time_step, "monomer_ids": self.sim_data.process.translation.monomer_data[ "id" ].tolist(), "rRNA_cistron_tu_mapping_matrix": self.sim_data.process.transcription.rRNA_cistron_tu_mapping_matrix, "rRNA_is_5S": self.sim_data.process.transcription.cistron_data[ "is_5S_rRNA" ][self.sim_data.process.transcription.cistron_data["is_rRNA"]], "rRNA_is_16S": self.sim_data.process.transcription.cistron_data[ "is_16S_rRNA" ][self.sim_data.process.transcription.cistron_data["is_rRNA"]], "rRNA_is_23S": self.sim_data.process.transcription.cistron_data[ "is_23S_rRNA" ][self.sim_data.process.transcription.cistron_data["is_rRNA"]], "emit_unique": self.emit_unique, }
[docs] def get_rnap_data_listener_config(self, time_step=1): return { "time_step": time_step, "stable_RNA_indexes": np.where( np.logical_or( self.sim_data.process.transcription.rna_data["is_rRNA"], self.sim_data.process.transcription.rna_data["is_tRNA"], ) )[0], "cistron_ids": self.sim_data.process.transcription.cistron_data["id"], "cistron_tu_mapping_matrix": self.sim_data.process.transcription.cistron_tu_mapping_matrix, "emit_unique": self.emit_unique, }
[docs] def get_exchange_data_config(self, time_step=1): return { "time_step": time_step, "external_state": self.sim_data.external_state, "environment_molecules": list( self.sim_data.external_state.env_to_exchange_map.keys() ), }
[docs] def get_media_update_config(self, time_step=1): # if current_timeline_id is specified by a variant in sim_data, # look it up in saved_timelines. if self.sim_data.external_state.current_timeline_id: current_timeline = self.sim_data.external_state.saved_timelines[ self.sim_data.external_state.current_timeline_id ] else: current_timeline = self.media_timeline return { "time_step": time_step, "saved_media": self.sim_data.external_state.saved_media, "media_id": current_timeline[0][1], }
[docs] def get_bulk_timeline_config(self, time_step=1): # if current_timeline_id is specified by a variant in sim_data, look it up in saved_timelines. if self.sim_data.external_state.current_timeline_id: current_timeline = self.sim_data.external_state.saved_timelines[ self.sim_data.external_state.current_timeline_id ] else: current_timeline = self.media_timeline return { "time_step": time_step, "timeline": { time: {("media_id",): media_id} for time, media_id in current_timeline }, }
[docs] def generate_initial_state(self): """ Calculate the initial conditions for a new cell without inherited state from a parent cell. """ mass_coeff = 1.0 if self.mass_distribution: mass_coeff = self.random_state.normal(loc=1.0, scale=0.1) # if current_timeline_id is specified by a variant in sim_data, # look it up in saved_timelines. if self.sim_data.external_state.current_timeline_id: current_timeline = self.sim_data.external_state.saved_timelines[ self.sim_data.external_state.current_timeline_id ] else: current_timeline = self.media_timeline media_id = current_timeline[0][1] current_concentrations = self.sim_data.external_state.saved_media[media_id] exch_from_conc = self.sim_data.external_state.exchange_data_from_concentrations exchange_data = exch_from_conc(current_concentrations) unconstrained = exchange_data["importUnconstrainedExchangeMolecules"] constrained = exchange_data["importConstrainedExchangeMolecules"] import_molecules = set(unconstrained) | set(constrained) bulk_state = initialize_bulk_counts( self.sim_data, media_id, import_molecules, self.random_state, mass_coeff, self.ppgpp_regulation, self.trna_attenuation, ) cell_mass = calculate_cell_mass(bulk_state, {}, self.sim_data) # Create new PRNG for unique ID generation so self.random_state # can be used to faithfully replicate wcEcoli behavior unique_id_rng = np.random.RandomState(seed=self.seed + 100) unique_molecules = initialize_unique_molecules( bulk_state, self.sim_data, cell_mass, self.random_state, unique_id_rng, self.superhelical_density, self.ppgpp_regulation, self.trna_attenuation, self.mechanistic_replisome, ) if self.trna_charging: initialize_trna_charging( bulk_state, unique_molecules, self.sim_data, self.variable_elongation_translation, ) cell_mass = calculate_cell_mass(bulk_state, unique_molecules, self.sim_data) set_small_molecule_counts( bulk_state["count"], self.sim_data, media_id, import_molecules, mass_coeff, cell_mass, ) # Numpy arrays are read-only outside of updaters for safety bulk_state.flags.writeable = False for unique_state in unique_molecules.values(): unique_state.flags.writeable = False return { "bulk": bulk_state, "unique": unique_molecules, "environment": { "exchange": {mol: 0 for mol in current_concentrations}, "exchange_data": { "unconstrained": sorted(unconstrained), "constrained": constrained, }, "media_id": media_id, }, "boundary": { "external": { mol: conc * vivunits.mM for mol, conc in current_concentrations.items() } }, }