import os
import re
import binascii
from itertools import chain
import numpy as np
import pickle
from typing import Any, Optional, TYPE_CHECKING
from vivarium.library.units import units as vivunits
from wholecell.utils import units
from wholecell.utils.unit_struct_array import UnitStructArray
from wholecell.utils.fitting import normalize
from wholecell.utils.filepath import ROOT_PATH
from ecoli.analysis.antibiotics_colony import DE_GENES
from ecoli.processes.polypeptide_elongation import MICROMOLAR_UNITS
from ecoli.library.parameters import param_store
from ecoli.library.initial_conditions import (
calculate_cell_mass,
initialize_bulk_counts,
initialize_trna_charging,
initialize_unique_molecules,
set_small_molecule_counts,
)
if TYPE_CHECKING:
from reconstruction.ecoli.simulation_data import SimulationDataEcoli
RAND_MAX = 2**31
SIM_DATA_PATH = os.path.join(ROOT_PATH, "reconstruction/sim_data/kb/simData.cPickle")
SIM_DATA_PATH_NO_OPERONS = os.path.join(
ROOT_PATH, "reconstruction/sim_data/kb_no_operons/simData.cPickle"
)
MAX_TIME_STEP = 1
[docs]
class LoadSimData:
def __init__(
self,
sim_data_path: str = SIM_DATA_PATH,
seed: int = 0,
total_time: int = 10,
fixed_media: Optional[str] = None,
media_timeline: tuple[tuple[int, str]] = (
(0, "minimal"),
), # have to change both media_timeline and condition
condition: str = "basal",
trna_charging: bool = True,
ppgpp_regulation: bool = True,
mar_regulon: bool = False,
process_configs: Optional[dict[str, Any]] = None,
amp_lysis: bool = False,
mass_distribution: bool = True,
superhelical_density: bool = False,
recycle_stalled_elongation: bool = False,
mechanistic_replisome: bool = False,
trna_attenuation: bool = True,
variable_elongation_transcription: bool = True,
variable_elongation_translation: bool = False,
mechanistic_translation_supply: bool = True,
mechanistic_aa_transport: bool = True,
translation_supply: bool = True,
aa_supply_in_charging: bool = True,
disable_ppgpp_elongation_inhibition: bool = False,
# TODO: Implement these
adjust_timestep_for_charging: bool = False,
time_step_safety_fraction: float = 1.3,
update_time_step_freq: int = 5,
max_time_step: int = MAX_TIME_STEP,
emit_unique: bool = False,
**kwargs,
):
"""
Loads simulation data generated by the ParCa
(:py:func:`~reconstruction.ecoli.fit_sim_data_1.fitSimData_1`,
runscript located at :py:mod:`runscripts.parca`) and extracts
parameters for each process. Typically instantiated by
:py:class:`~ecoli.composites.ecoli_master.Ecoli` with
keyword arguments given by the config loaded by
:py:class:`~ecoli.experiments.ecoli_master_sim.EcoliSim`.
Args:
sim_data_path: Path to simulation data pickle file
seed: Used to deterministically seed all random number
generators. Simulations with the same seed will yield
the same output.
total_time: Time to simulate (seconds)
media_timeline: Iterable of tuples where the first element of
each tuple is the time to start using a certain media and the
second element is a string corresponding to one of the media
options in ``self.sim_data.external_state.saved_media``
trna_charging: Use steady-state charging model
(:py:class:`~ecoli.processes.polypeptide_elongation.SteadyStateElongationModel`)
in :py:class:`~ecoli.processes.polypeptide_elongation.PolypeptideElongation`
ppgpp_regulation: Enable growth rate control using ppGpp in
polypeptide elongation and transcript initiation
mar_regulon: Enable tetracycline-related transcriptional regulation
of antibiotic resistance genes by the mar operon
process_configs: Mapping of process names to config dictionaries,
currently only used to configure :py:class:`~ecoli.processes.rna_interference.RnaInterference`
amp_lysis: Enable ampicillin-induced lysis, adds ampicillin and
hydrolyzed ampicillin to bulk molecule store
mass_distribution: If ``config['division_variable']`` is
set to ``('listeners', 'mass', 'dry_mass')`` and
``config['division_threshold']`` is set to ``'mass_distribution'``,
enabling this multiplies the division threshold by a Gaussian
noise factor. If the simulation is configured to generate an
initial state from pickled simulation data (see option 3 in
:py:meth:`~ecoli.composites.ecoli_master.Ecoli.initial_state`),
enabling this adds Gaussian noise to the generated state
superhelical_density: Enables superhelical density calculations on
``('unique', 'chromosomal_segment)'`` molecules in
:py:class:`~ecoli.processes.chromosome_structure.ChromosomeStructure`
mechanistic_replisome: Ensures that there are adequate replisome
subunits to initiate each round of chromosome replication in
:py:class:`~ecoli.processes.chromosome_replication.ChromosomeReplication`
recycle_stalled_elongation: Free up RNAPs and nucleotides for
stalled transcripts in
:py:class:`~ecoli.processes.transcript_elongation.TranscriptElongation`
trna_attenuation: Implements `attenuation <https://en.wikipedia.org/wiki/Attenuator_(genetics)>`_
in :py:class:`~ecoli.processes.transcript_initiation.TranscriptInitiation`
and :py:class:`~ecoli.processes.transcript_elongation.TranscriptElongation`
variable_elongation_transcription: Allow different elongation rate for different transcripts
(currently increases rates for rRNA, see
:py:meth:`~reconstruction.ecoli.dataclasses.process.transcription.Transcription.make_elongation_rates`).
Usually set this consistently for ParCa and simulation.
:py:class:`~ecoli.processes.transcript_initiation.TranscriptInitiation`
Usually set this consistently for ParCa and simulation.
variable_elongation_translation: Allow different polypeptides to
have different translation rates (currently increases rates for
ribosomal proteins, see
:py:meth:`~reconstruction.ecoli.dataclasses.process.translation.Translation.make_elongation_rates`).
Usually set this consistently for ParCa and simulation.
mechanistic_translation_supply: Calculate charged tRNA supply using
starting amino acid concentration only based on mechanistic
synthesis and supply in
:py:class:`~ecoli.processes.polypeptide_elongation.PolypeptideElongation`
when ``trna_charging`` is ``True``
mechanistic_aa_transport: Constrain amino acid uptake based on
external concentrations and exchange rates in
:py:class:`~ecoli.processes.metabolism.Metabolism`
translation_supply: Use :py:class:`~ecoli.processes.polypeptide_elongation.TranslationSupplyElongationModel`
in :py:class:`~ecoli.processes.polypeptide_elongation.PolypeptideElongation`.
Superseded by ``trna_charging``
aa_supply_in_charging: Calculate charged tRNA supply from each sub
time step while solving the charging steady state in
:py:class:`~ecoli.processes.polypeptide_elongation.PolypeptideElongation`
when ``trna_charging`` is ``True``
disable_ppgpp_elongation_inhibition: Turn off ppGpp-mediated
inhibition in :py:class:`~ecoli.processes.polypeptide_elongation.PolypeptideElongation`
when ``trna_charging`` is ``True``
"""
self.seed = seed
self.total_time = total_time
self.random_state = np.random.RandomState(seed=seed)
# Iterable of tuples with the format (time, media_id)
if condition is not None:
self.condition = condition
if fixed_media is not None and media_timeline is not None:
media_timeline = ((0, fixed_media),)
self.media_timeline = media_timeline
self.trna_charging = trna_charging
self.ppgpp_regulation = ppgpp_regulation
self.mass_distribution = mass_distribution
self.superhelical_density = superhelical_density
self.mechanistic_replisome = mechanistic_replisome
self.trna_attenuation = trna_attenuation
self.variable_elongation_transcription = variable_elongation_transcription
self.variable_elongation_translation = variable_elongation_translation
self.mechanistic_translation_supply = mechanistic_translation_supply
self.mechanistic_aa_transport = mechanistic_aa_transport
self.translation_supply = translation_supply
self.aa_supply_in_charging = aa_supply_in_charging
self.adjust_timestep_for_charging = adjust_timestep_for_charging
self.disable_ppgpp_elongation_inhibition = disable_ppgpp_elongation_inhibition
self.recycle_stalled_elongation = recycle_stalled_elongation
self.emit_unique = emit_unique
# NEW to vivarium-ecoli: Whether to lump miscRNA with mRNAs
# when calculating degradation
self.degrade_misc = False
# load sim_data
with open(sim_data_path, "rb") as sim_data_file:
self.sim_data: "SimulationDataEcoli" = pickle.load(sim_data_file)
if condition is not None:
self.sim_data.condition = condition
# Used by processes to apply submass updates to correct unique attr
self.submass_indices = {
f"massDiff_{submass}": idx
for submass, idx in self.sim_data.submass_name_to_index.items()
}
# Logic to handle internal shifts
if "agent_id" in kwargs and hasattr(self.sim_data, "internal_shift_dict"):
generation = len(kwargs["agent_id"])
func_to_apply = None
func_params = ()
for shift_gen, (
shift_func,
shift_params,
) in self.sim_data.internal_shift_dict.items():
if generation >= shift_gen:
func_to_apply = shift_func
func_params = shift_params
if func_to_apply is not None:
func_to_apply(self.sim_data, *func_params)
# NEW to vivarium-ecoli
# Changes gene expression upon tetracycline exposure
# Note: Incompatible with operons because there are genes
# that are part of the same operon but have different changes
# in expression under tetracycline exposure (e.g. marRAB)
if mar_regulon:
# Define aliases to reduce code verbosity
treg_alias = self.sim_data.process.transcription_regulation
bulk_mol_alias = self.sim_data.internal_state.bulk_molecules
eq_alias = self.sim_data.process.equilibrium
# Assume marA (PD00365) controls the entire tetracycline
# gene expression program and marR (CPLX0-7710) is inactivated
# by complexation with tetracycline
treg_alias.tf_ids += ["PD00365", "CPLX0-7710"]
treg_alias.delta_prob["shape"] = (
treg_alias.delta_prob["shape"][0],
treg_alias.delta_prob["shape"][1] + 2,
)
treg_alias.tf_to_tf_type["PD00365"] = "0CS"
treg_alias.tf_to_tf_type["CPLX0-7710"] = "1CS"
treg_alias.active_to_bound["CPLX0-7710"] = "marR-tet"
# TU index of genes for outer membrane proteins, regulators,
# and inner membrane transporters
new_deltaI = DE_GENES["TU_idx"].to_numpy()
new_deltaJ = np.array([24] * 24)
# Values were chosen to recapitulate mRNA fold change when exposed
# to 1.5 mg/L tetracycline (Viveiros et al. 2007)
new_deltaV = np.array(
[
1.76e-03,
2.21e-05,
2.44e-05,
2.10e-06,
4.11e-06,
7.80e-06,
5.40e-04,
7.42e-06,
1.51e-06,
2.95e-05,
2.02e-05,
1.96e-04,
5.77e-05,
2.34e-04,
2.04e-06,
1.58e-07,
8.89e-08,
8.52e-07,
8.09e-06,
1.68e-08,
7.17e-08,
8.08e-06,
1.40e-08,
-5.30e-07,
]
)
treg_alias.delta_prob["deltaI"] = np.concatenate(
[treg_alias.delta_prob["deltaI"], new_deltaI]
)
treg_alias.delta_prob["deltaJ"] = np.concatenate(
[treg_alias.delta_prob["deltaJ"], new_deltaJ]
)
treg_alias.delta_prob["deltaV"] = np.concatenate(
[treg_alias.delta_prob["deltaV"], new_deltaV]
)
# Add mass data for tetracycline, marR-tet, and 30s-tet
bulk_data = bulk_mol_alias.bulk_data.fullArray()
marR_mass = np.array(bulk_data[bulk_data["id"] == "CPLX0-7710[c]"][0][1])
free_30s_mass = np.array(
bulk_data[bulk_data["id"] == "CPLX0-3953[c]"][0][1]
)
tet_mass = param_store.get(("tetracycline", "mass")).magnitude
tet_mass = np.array([0, 0, 0, 0, 0, 0, tet_mass, 0, 0])
bulk_data = np.append(
bulk_data,
np.array(
[
("marR-tet[c]",) + (marR_mass + tet_mass,),
("tetracycline[p]",) + (tet_mass,),
("tetracycline[c]",) + (tet_mass,),
("CPLX0-3953-tetracycline[c]",) + (free_30s_mass + tet_mass,),
],
dtype=bulk_data.dtype,
),
)
bulk_units = bulk_mol_alias.bulk_data.fullUnits()
bulk_mol_alias.bulk_data = UnitStructArray(bulk_data, bulk_units)
# Add equilibrium reaction for marR-tetracycline and
# reinitialize self.sim_data.process.equilibrium variables
stoich_matrix_shape = eq_alias._stoichMatrix.shape
eq_alias._stoichMatrixI = np.concatenate(
[
eq_alias._stoichMatrixI,
np.arange(stoich_matrix_shape[0], stoich_matrix_shape[0] + 3),
]
)
eq_alias._stoichMatrixJ = np.concatenate(
[eq_alias._stoichMatrixJ, np.array([stoich_matrix_shape[1]] * 3)]
)
eq_alias._stoichMatrixV = np.concatenate(
[eq_alias._stoichMatrixV, np.array([-1, -1, 1])]
)
eq_alias.molecule_names += [
"CPLX0-7710[c]",
"tetracycline[c]",
"marR-tet[c]",
]
eq_alias.ids_complexes = [
eq_alias.molecule_names[i]
for i in np.where(np.any(eq_alias.stoich_matrix() > 0, axis=1))[0]
]
eq_alias.rxn_ids += ["marR-tet"]
# All existing equilibrium rxns use a forward rate of 1
eq_alias.rates_fwd = np.concatenate([eq_alias.rates_fwd, np.array([1])])
# Existing equilibrium rxns use a default reverse rate of 1e-6
# This happens to nearly perfectly yield full MarR inactivation
# at 1.5 mg/L external tetracycline
eq_alias.rates_rev = np.concatenate([eq_alias.rates_rev, np.array([1e-6])])
# Mass balance matrix
eq_alias._stoichMatrixMass = np.concatenate(
[
eq_alias._stoichMatrixMass,
np.array(
[marR_mass.sum(), tet_mass.sum(), (marR_mass + tet_mass).sum()]
),
]
)
eq_alias.balance_matrix = eq_alias.stoich_matrix() * eq_alias.mass_matrix()
# Find the mass balance of each equation in the balanceMatrix
massBalanceArray = eq_alias.mass_balance()
# The stoichometric matrix should balance out to numerical zero.
assert np.max(np.absolute(massBalanceArray)) < 1e-9
# Build matrices
eq_alias._populateDerivativeAndJacobian()
eq_alias._stoichMatrix = eq_alias.stoich_matrix()
# NEW to vivarium-ecoli
# Append new RNA IDs and degradation rates for sRNA-mRNA duplexes
if isinstance(process_configs, dict):
rnai_data = process_configs.get("ecoli-rna-interference", False)
if rnai_data:
# Define aliases to reduce code verbosity
ts_alias = self.sim_data.process.transcription
bulk_mol_alias = self.sim_data.internal_state.bulk_molecules
treg_alias = self.sim_data.process.transcription_regulation
self.duplex_ids = np.array(rnai_data["duplex_ids"])
n_duplex_rnas = len(self.duplex_ids)
duplex_deg_rates = np.array(rnai_data["duplex_deg_rates"])
duplex_km = np.array(rnai_data["duplex_km"])
duplex_na = np.zeros(n_duplex_rnas)
# Mark duplexes as miscRNAs so they are degraded appropriately
duplex_is_miscRNA = np.ones(n_duplex_rnas, dtype=np.bool_)
self.srna_ids = np.array(rnai_data["srna_ids"])
target_ids = np.array(rnai_data["target_ids"])
self.target_tu_ids = np.zeros(len(target_ids), dtype=int)
self.binding_probs = np.array(rnai_data["binding_probs"])
# Get duplex length, ACGU content, molecular weight, and sequence
duplex_lengths = np.zeros(n_duplex_rnas)
duplex_ACGU = np.zeros((n_duplex_rnas, 4))
duplex_mw = np.zeros(n_duplex_rnas)
rna_data = ts_alias.rna_data.fullArray()
rna_units = ts_alias.rna_data.fullUnits()
rna_sequences = ts_alias.transcription_sequences
duplex_sequences = np.full((n_duplex_rnas, rna_sequences.shape[1]), -1)
for i, (srna_id, target_id) in enumerate(
zip(self.srna_ids, target_ids)
):
# Use first match for each sRNA and target mRNA
srna_tu_id = np.where(rna_data["id"] == srna_id)[0][0]
self.target_tu_ids[i] = np.where(rna_data["id"] == target_id)[0][0]
duplex_ACGU[i] = (
rna_data["counts_ACGU"][srna_tu_id]
+ rna_data["counts_ACGU"][self.target_tu_ids[i]]
)
duplex_mw[i] = (
rna_data["mw"][srna_tu_id]
+ rna_data["mw"][self.target_tu_ids[i]]
)
srna_length = rna_data["length"][srna_tu_id]
target_length = rna_data["length"][self.target_tu_ids[i]]
duplex_lengths[i] = srna_length + target_length
if duplex_lengths[i] > duplex_sequences.shape[1]:
# Extend columns in sequence arrays to accomodate duplexes
# where the sum of the RNA lengths > # of columns
extend_length = duplex_lengths[i] - duplex_sequences.shape[1]
extend_duplex_sequences = np.full(
(duplex_sequences.shape[0], extend_length),
-1,
dtype=duplex_sequences.dtype,
)
duplex_sequences = np.append(
duplex_sequences, extend_duplex_sequences, axis=1
)
extend_rna_sequences = np.full(
(rna_sequences.shape[0], extend_length),
-1,
dtype=rna_sequences.dtype,
)
rna_sequences = np.append(
rna_sequences, extend_rna_sequences, axis=1
)
duplex_sequences[i, :srna_length] = rna_sequences[srna_tu_id][
:srna_length
]
duplex_sequences[i, srna_length : srna_length + target_length] = (
rna_sequences[self.target_tu_ids[i]][:target_length]
)
# Make duplex metadata visible to all RNA-related processes
old_n_rnas = rna_data.shape[0]
rna_data = np.resize(rna_data, old_n_rnas + n_duplex_rnas)
rna_sequences = np.resize(
rna_sequences, (old_n_rnas + n_duplex_rnas, rna_sequences.shape[1])
)
for i, new_rna in enumerate(
zip(
self.duplex_ids,
duplex_deg_rates,
duplex_na,
duplex_lengths,
duplex_ACGU,
duplex_mw,
duplex_na,
duplex_na,
duplex_km,
duplex_na,
duplex_na,
duplex_na,
duplex_na,
duplex_is_miscRNA,
duplex_na,
duplex_na,
duplex_na,
duplex_na,
duplex_na,
duplex_na,
)
):
rna_data[old_n_rnas + i] = new_rna
rna_sequences[old_n_rnas + i] = duplex_sequences[i]
ts_alias.transcription_sequences = rna_sequences
ts_alias.rna_data = UnitStructArray(rna_data, rna_units)
# Add bulk mass data for duplexes
bulk_data = bulk_mol_alias.bulk_data.fullArray()
bulk_units = bulk_mol_alias.bulk_data.fullUnits()
old_n_bulk = bulk_data.shape[0]
bulk_data = np.resize(bulk_data, bulk_data.shape[0] + n_duplex_rnas)
for i, duplex in enumerate(self.duplex_ids):
duplex_submasses = np.zeros(9)
duplex_submasses[2] = duplex_mw[i]
bulk_data[old_n_bulk + i] = (duplex, duplex_submasses)
bulk_mol_alias.bulk_data = UnitStructArray(bulk_data, bulk_units)
# Add filler transcription data for duplex RNAs to prevent errors
treg_alias.basal_prob = np.append(treg_alias.basal_prob, 0)
treg_alias.delta_prob["shape"] = (
treg_alias.delta_prob["shape"][0] + 1,
treg_alias.delta_prob["shape"][1],
)
# Set flag so miscRNA duplexes are degraded together with mRNAs
self.degrade_misc = True
# Resize cistron-TU mapping matrix
curr_shape = ts_alias.cistron_tu_mapping_matrix._shape
ts_alias.cistron_tu_mapping_matrix._shape = (
curr_shape[0],
curr_shape[1] + n_duplex_rnas,
)
# Add duplexes to RNA synth prob calculations
ts_alias.exp_free = np.concatenate(
[ts_alias.exp_free, [0] * n_duplex_rnas]
)
ts_alias.exp_ppgpp = np.concatenate(
[ts_alias.exp_ppgpp, [0] * n_duplex_rnas]
)
# NEW to vivarium-ecoli
# Add ampicillin to bulk molecules
if amp_lysis:
bulk_mol_alias = self.sim_data.internal_state.bulk_molecules
# Add mass data for ampicillin and hydrolyzed ampicillin
bulk_data = bulk_mol_alias.bulk_data.fullArray()
amp_mass = param_store.get(("ampicillin", "molar_mass")).magnitude
amp_mass = np.array([0, 0, 0, 0, 0, 0, amp_mass, 0, 0])
amp_hydro_mass = amp_mass.copy()
# Include molar mass of water added during hydrolysis
amp_hydro_mass[6] += 18
bulk_data = np.append(
bulk_data,
np.array(
[
("ampicillin[p]",) + (amp_mass,),
("ampicillin_hydrolyzed[p]",) + (amp_hydro_mass,),
],
dtype=bulk_data.dtype,
),
)
bulk_units = bulk_mol_alias.bulk_data.fullUnits()
bulk_mol_alias.bulk_data = UnitStructArray(bulk_data, bulk_units)
[docs]
def get_monomer_counts_indices(self, names):
"""Given a list of monomer names without location tags, this returns
the indices of those monomers in the monomer_counts listener array.
The "id" column of reconstruction/ecoli/flat/proteins.tsv contains
nearly all supported monomer names."""
monomer_ids = self.sim_data.process.translation.monomer_data["id"]
# Strip location string (e.g. [c])
monomer_ids = np.array(
[re.split(r"\[.\]", monomer)[0] for monomer in monomer_ids]
)
return [int(np.where(monomer_ids == name)[0][0]) for name in names]
[docs]
def get_mrna_counts_indices(self, names):
"""Given a list of mRNA names without location tags, this returns
the indices of those mRNAs in the mRNA_counts listener array.
The "id" column of reconstruction/ecoli/flat/rnas.tsv contains
nearly all supported mRNA names."""
is_mrna = self.sim_data.process.transcription.rna_data["is_mRNA"]
mrna_ids = self.sim_data.process.transcription.rna_data["id"][is_mrna]
# Strip location string (e.g. [c])
mrna_ids = np.array([re.split(r"\[.\]", mrna)[0] for mrna in mrna_ids])
return [int(np.where(mrna_ids == name)[0][0]) for name in names]
[docs]
def get_rna_indices(self, names):
"""Given a list of RNA names without location tags, this returns
the TU indices of those RNAs (for rna_init_events and rna_synth_prob).
The "id" column of reconstruction/ecoli/flat/rnas.tsv contains
nearly all supported RNA names."""
rna_ids = self.sim_data.process.transcription.rna_data["id"]
# Strip location string (e.g. [c])
rna_ids = np.array([re.split(r"\[.\]", mrna)[0] for mrna in rna_ids])
return [int(np.where(rna_ids == name)[0][0]) for name in names]
[docs]
def _seedFromName(self, name):
return binascii.crc32(name.encode("utf-8"), self.seed) & 0xFFFFFFFF
[docs]
def get_config_by_name(self, name, time_step=1):
name_config_mapping = {
"ecoli-tf-binding": self.get_tf_config,
"ecoli-transcript-initiation": self.get_transcript_initiation_config,
"ecoli-transcript-elongation": self.get_transcript_elongation_config,
"ecoli-rna-degradation": self.get_rna_degradation_config,
"ecoli-polypeptide-initiation": self.get_polypeptide_initiation_config,
"ecoli-polypeptide-elongation": self.get_polypeptide_elongation_config,
"ecoli-complexation": self.get_complexation_config,
"ecoli-two-component-system": self.get_two_component_system_config,
"ecoli-equilibrium": self.get_equilibrium_config,
"ecoli-protein-degradation": self.get_protein_degradation_config,
"ecoli-metabolism": self.get_metabolism_config,
"ecoli-metabolism-redux": self.get_metabolism_redux_config,
"ecoli-metabolism-redux-classic": self.get_metabolism_redux_config,
"ecoli-chromosome-replication": self.get_chromosome_replication_config,
"ecoli-mass": self.get_mass_config,
"ecoli-mass-listener": self.get_mass_listener_config,
"post-division-mass-listener": self.get_mass_listener_config,
"RNA_counts_listener": self.get_rna_counts_listener_config,
"monomer_counts_listener": self.get_monomer_counts_listener_config,
"rna_synth_prob_listener": self.get_rna_synth_prob_listener_config,
"allocator": self.get_allocator_config,
"ecoli-chromosome-structure": self.get_chromosome_structure_config,
"ecoli-rna-interference": self.get_rna_interference_config,
"tetracycline-ribosome-equilibrium": self.get_tetracycline_ribosome_equilibrium_config,
"ecoli-rna-maturation": self.get_rna_maturation_config,
"ecoli-tf-unbinding": self.get_tf_unbinding_config,
"dna_supercoiling_listener": self.get_dna_supercoiling_listener_config,
"ribosome_data_listener": self.get_ribosome_data_listener_config,
"rnap_data_listener": self.get_rnap_data_listener_config,
"unique_molecule_counts": self.get_unique_molecule_counts_config,
"exchange_data": self.get_exchange_data_config,
"media_update": self.get_media_update_config,
"bulk-timeline": self.get_bulk_timeline_config,
}
try:
return name_config_mapping[name](time_step=time_step)
except KeyError:
raise KeyError(
f"Process of name {name} is not known to LoadSimData.get_config_by_name"
)
[docs]
def get_chromosome_replication_config(self, time_step=1):
get_dna_critical_mass = self.sim_data.mass.get_dna_critical_mass
doubling_time = self.sim_data.condition_to_doubling_time[
self.sim_data.condition
]
replisome_trimer_subunit_masses = np.vstack(
[
self.sim_data.getter.get_submass_array(x).asNumber(
units.fg / units.count
)
for x in self.sim_data.molecule_groups.replisome_trimer_subunits
]
)
replisome_monomer_subunit_masses = np.vstack(
[
self.sim_data.getter.get_submass_array(x).asNumber(
units.fg / units.count
)
for x in self.sim_data.molecule_groups.replisome_monomer_subunits
]
)
replisome_mass_array = 3 * replisome_trimer_subunit_masses.sum(
axis=0
) + replisome_monomer_subunit_masses.sum(axis=0)
chromosome_replication_config = {
"time_step": time_step,
"max_time_step": self.sim_data.process.replication.max_time_step,
"get_dna_critical_mass": get_dna_critical_mass,
"criticalInitiationMass": get_dna_critical_mass(doubling_time),
"nutrientToDoublingTime": self.sim_data.nutrient_to_doubling_time,
"replichore_lengths": self.sim_data.process.replication.replichore_lengths,
"sequences": self.sim_data.process.replication.replication_sequences,
"polymerized_dntp_weights": self.sim_data.process.replication.replication_monomer_weights,
"replication_coordinate": self.sim_data.process.transcription.rna_data[
"replication_coordinate"
],
"D_period": self.sim_data.process.replication.d_period.asNumber(units.s),
"replisome_protein_mass": replisome_mass_array.sum(),
"no_child_place_holder": self.sim_data.process.replication.no_child_place_holder,
"basal_elongation_rate": self.sim_data.process.replication.basal_elongation_rate,
"make_elongation_rates": self.sim_data.process.replication.make_elongation_rates,
# sim options
"mechanistic_replisome": self.mechanistic_replisome,
# molecules
"replisome_trimers_subunits": self.sim_data.molecule_groups.replisome_trimer_subunits,
"replisome_monomers_subunits": self.sim_data.molecule_groups.replisome_monomer_subunits,
"dntps": self.sim_data.molecule_groups.dntps,
"ppi": [self.sim_data.molecule_ids.ppi],
# random state
"seed": self._seedFromName("ChromosomeReplication"),
"submass_indices": self.submass_indices,
}
return chromosome_replication_config
[docs]
def get_tf_config(self, time_step=1):
tf_binding_config = {
"time_step": time_step,
"tf_ids": self.sim_data.process.transcription_regulation.tf_ids,
"rna_ids": self.sim_data.process.transcription.rna_data["id"],
"delta_prob": self.sim_data.process.transcription_regulation.delta_prob,
"n_avogadro": self.sim_data.constants.n_avogadro,
"cell_density": self.sim_data.constants.cell_density,
"p_promoter_bound_tf": self.sim_data.process.transcription_regulation.p_promoter_bound_tf,
"tf_to_tf_type": self.sim_data.process.transcription_regulation.tf_to_tf_type,
"active_to_bound": self.sim_data.process.transcription_regulation.active_to_bound,
"get_unbound": self.sim_data.process.equilibrium.get_unbound,
"active_to_inactive_tf": self.sim_data.process.two_component_system.active_to_inactive_tf,
"bulk_molecule_ids": self.sim_data.internal_state.bulk_molecules.bulk_data[
"id"
],
"bulk_mass_data": self.sim_data.internal_state.bulk_molecules.bulk_data[
"mass"
],
"seed": self._seedFromName("TfBinding"),
"submass_indices": self.submass_indices,
"emit_unique": self.emit_unique,
}
return tf_binding_config
[docs]
def get_transcript_initiation_config(self, time_step=1):
transcript_initiation_config = {
"time_step": time_step,
"fracActiveRnapDict": self.sim_data.process.transcription.rnapFractionActiveDict,
"rnaLengths": self.sim_data.process.transcription.rna_data["length"],
"rnaPolymeraseElongationRateDict": self.sim_data.process.transcription.rnaPolymeraseElongationRateDict,
"variable_elongation": self.variable_elongation_transcription,
"make_elongation_rates": self.sim_data.process.transcription.make_elongation_rates,
"active_rnap_footprint_size": self.sim_data.process.transcription.active_rnap_footprint_size,
"basal_prob": self.sim_data.process.transcription_regulation.basal_prob,
"delta_prob": self.sim_data.process.transcription_regulation.delta_prob,
"get_delta_prob_matrix": self.sim_data.process.transcription_regulation.get_delta_prob_matrix,
"perturbations": getattr(self.sim_data, "genetic_perturbations", {}),
"rna_data": self.sim_data.process.transcription.rna_data,
"idx_rRNA": np.where(
self.sim_data.process.transcription.rna_data["is_rRNA"]
)[0],
"idx_mRNA": np.where(
self.sim_data.process.transcription.rna_data["is_mRNA"]
)[0],
"idx_tRNA": np.where(
self.sim_data.process.transcription.rna_data["is_tRNA"]
)[0],
"idx_rprotein": np.where(
self.sim_data.process.transcription.rna_data[
"includes_ribosomal_protein"
]
)[0],
"idx_rnap": np.where(
self.sim_data.process.transcription.rna_data["includes_RNAP"]
)[0],
"rnaSynthProbFractions": self.sim_data.process.transcription.rnaSynthProbFraction,
"rnaSynthProbRProtein": self.sim_data.process.transcription.rnaSynthProbRProtein,
"rnaSynthProbRnaPolymerase": self.sim_data.process.transcription.rnaSynthProbRnaPolymerase,
"replication_coordinate": self.sim_data.process.transcription.rna_data[
"replication_coordinate"
],
"transcription_direction": self.sim_data.process.transcription.rna_data[
"is_forward"
],
"n_avogadro": self.sim_data.constants.n_avogadro,
"cell_density": self.sim_data.constants.cell_density,
"inactive_RNAP": "APORNAP-CPLX[c]",
"ppgpp": self.sim_data.molecule_ids.ppGpp,
"synth_prob": self.sim_data.process.transcription.synth_prob_from_ppgpp,
"copy_number": self.sim_data.process.replication.get_average_copy_number,
"ppgpp_regulation": self.ppgpp_regulation,
"get_rnap_active_fraction_from_ppGpp": self.sim_data.process.transcription.get_rnap_active_fraction_from_ppGpp,
# attenuation
"trna_attenuation": self.trna_attenuation,
"attenuated_rna_indices": self.sim_data.process.transcription.attenuated_rna_indices,
"attenuation_adjustments": self.sim_data.process.transcription.attenuation_basal_prob_adjustments,
# random seed
"seed": self._seedFromName("TranscriptInitiation"),
"emit_unique": self.emit_unique,
}
return transcript_initiation_config
[docs]
def get_transcript_elongation_config(self, time_step=1):
transcript_elongation_config = {
"time_step": time_step,
"max_time_step": self.sim_data.process.transcription.max_time_step,
"rnaPolymeraseElongationRateDict": self.sim_data.process.transcription.rnaPolymeraseElongationRateDict,
"rnaIds": self.sim_data.process.transcription.rna_data["id"],
"rnaLengths": self.sim_data.process.transcription.rna_data[
"length"
].asNumber(),
"rnaSequences": self.sim_data.process.transcription.transcription_sequences,
"ntWeights": self.sim_data.process.transcription.transcription_monomer_weights,
"endWeight": self.sim_data.process.transcription.transcription_end_weight,
"replichore_lengths": self.sim_data.process.replication.replichore_lengths,
"is_mRNA": self.sim_data.process.transcription.rna_data["is_mRNA"],
"ppi": self.sim_data.molecule_ids.ppi,
"inactive_RNAP": "APORNAP-CPLX[c]",
"ntp_ids": ["ATP[c]", "CTP[c]", "GTP[c]", "UTP[c]"],
"variable_elongation": self.variable_elongation_transcription,
"make_elongation_rates": self.sim_data.process.transcription.make_elongation_rates,
"fragmentBases": self.sim_data.molecule_groups.polymerized_ntps,
"charged_trnas": self.sim_data.process.transcription.charged_trna_names,
# attenuation
"trna_attenuation": self.trna_attenuation,
"polymerized_ntps": self.sim_data.molecule_groups.polymerized_ntps,
"cell_density": self.sim_data.constants.cell_density,
"n_avogadro": self.sim_data.constants.n_avogadro,
"get_attenuation_stop_probabilities": self.sim_data.process.transcription.get_attenuation_stop_probabilities,
"attenuated_rna_indices": self.sim_data.process.transcription.attenuated_rna_indices,
"location_lookup": self.sim_data.process.transcription.attenuation_location,
"recycle_stalled_elongation": self.recycle_stalled_elongation,
# random seed
"seed": self._seedFromName("TranscriptElongation"),
"submass_indices": self.submass_indices,
"emit_unique": self.emit_unique,
}
return transcript_elongation_config
[docs]
def get_rna_degradation_config(self, time_step=1):
transcription = self.sim_data.process.transcription
rna_ids = list(transcription.rna_data["id"])
mature_rna_ids = list(transcription.mature_rna_data["id"])
all_rna_ids = rna_ids + mature_rna_ids
rna_id_to_index = {rna_id: i for (i, rna_id) in enumerate(all_rna_ids)}
cistron_ids = transcription.cistron_data["id"]
cistron_id_to_index = {
cistron_id: i for (i, cistron_id) in enumerate(cistron_ids)
}
rna_degradation_config = {
"time_step": time_step,
"rna_ids": rna_ids,
"mature_rna_ids": mature_rna_ids,
"cistron_ids": cistron_ids,
"cistron_tu_mapping_matrix": transcription.cistron_tu_mapping_matrix,
"mature_rna_cistron_indexes": np.array(
[cistron_id_to_index[rna_id[:-3]] for rna_id in mature_rna_ids]
),
"all_rna_ids": all_rna_ids,
"n_total_RNAs": len(all_rna_ids),
"n_avogadro": self.sim_data.constants.n_avogadro,
"cell_density": self.sim_data.constants.cell_density,
"endoRNase_ids": self.sim_data.process.rna_decay.endoRNase_ids,
"exoRNase_ids": self.sim_data.molecule_groups.exoRNases,
"kcat_exoRNase": self.sim_data.constants.kcat_exoRNase,
"Kcat_endoRNases": self.sim_data.process.rna_decay.kcats,
"charged_trna_names": transcription.charged_trna_names,
"uncharged_trna_indexes": np.array(
[
rna_id_to_index[trna_id]
for trna_id in transcription.uncharged_trna_names
]
),
"rna_deg_rates": (1 / units.s)
* np.concatenate(
(
transcription.rna_data["deg_rate"].asNumber(1 / units.s),
transcription.mature_rna_data["deg_rate"].asNumber(1 / units.s),
)
),
# All mature RNAs are not mRNAs
"is_mRNA": np.concatenate(
(
transcription.rna_data["is_mRNA"].astype(np.int64),
np.zeros(len(transcription.mature_rna_data), np.int64),
)
),
"is_rRNA": np.concatenate(
(
transcription.rna_data["is_rRNA"].astype(np.int64),
transcription.mature_rna_data["is_rRNA"].astype(np.int64),
)
),
"is_tRNA": np.concatenate(
(
transcription.rna_data["is_tRNA"].astype(np.int64),
transcription.mature_rna_data["is_tRNA"].astype(np.int64),
)
),
# NEW to vivarium-ecoli, used to degrade duplexes from RNAi
"is_miscRNA": np.concatenate(
(
transcription.rna_data["is_miscRNA"].astype(np.int64),
np.array(
[False] * len(transcription.mature_rna_data), dtype=np.int64
),
)
),
"degrade_misc": self.degrade_misc,
# End of new code
# Load lengths and nucleotide counts for all degradable RNAs
"rna_lengths": np.concatenate(
(
transcription.rna_data["length"].asNumber(),
transcription.mature_rna_data["length"].asNumber(),
)
),
"nt_counts": np.concatenate(
(
transcription.rna_data["counts_ACGU"].asNumber(units.nt),
transcription.mature_rna_data["counts_ACGU"].asNumber(units.nt),
)
),
# Load bulk molecule names
"polymerized_ntp_ids": self.sim_data.molecule_groups.polymerized_ntps,
"water_id": self.sim_data.molecule_ids.water,
"ppi_id": self.sim_data.molecule_ids.ppi,
"proton_id": self.sim_data.molecule_ids.proton,
"nmp_ids": self.sim_data.molecule_groups.nmps,
"rrfa_idx": rna_id_to_index["RRFA-RRNA[c]"],
"rrla_idx": rna_id_to_index["RRLA-RRNA[c]"],
"rrsa_idx": rna_id_to_index["RRSA-RRNA[c]"],
"ribosome30S": self.sim_data.molecule_ids.s30_full_complex,
"ribosome50S": self.sim_data.molecule_ids.s50_full_complex,
# Load Michaelis-Menten constants fitted to recapitulate
# first-order RNA decay model
"Kms": (units.mol / units.L)
* np.concatenate(
(
transcription.rna_data["Km_endoRNase"].asNumber(
units.mol / units.L
),
transcription.mature_rna_data["Km_endoRNase"].asNumber(
units.mol / units.L
),
)
),
"seed": self._seedFromName("RnaDegradation"),
"emit_unique": self.emit_unique,
}
return rna_degradation_config
[docs]
def get_polypeptide_initiation_config(self, time_step=1):
polypeptide_initiation_config = {
"time_step": time_step,
"protein_lengths": self.sim_data.process.translation.monomer_data[
"length"
].asNumber(),
"translation_efficiencies": normalize(
self.sim_data.process.translation.translation_efficiencies_by_monomer
),
"active_ribosome_fraction": self.sim_data.process.translation.ribosomeFractionActiveDict,
"elongation_rates": self.sim_data.process.translation.ribosomeElongationRateDict,
"variable_elongation": self.variable_elongation_translation,
"make_elongation_rates": self.sim_data.process.translation.make_elongation_rates,
"rna_id_to_cistron_indexes": self.sim_data.process.transcription.rna_id_to_cistron_indexes,
"cistron_start_end_pos_in_tu": self.sim_data.process.transcription.cistron_start_end_pos_in_tu,
"tu_ids": self.sim_data.process.transcription.rna_data["id"],
"active_ribosome_footprint_size": self.sim_data.process.translation.active_ribosome_footprint_size,
"cistron_to_monomer_mapping": self.sim_data.relation.cistron_to_monomer_mapping,
"cistron_tu_mapping_matrix": self.sim_data.process.transcription.cistron_tu_mapping_matrix,
"monomer_index_to_cistron_index": {
i: self.sim_data.process.transcription._cistron_id_to_index[
monomer["cistron_id"]
]
for (i, monomer) in enumerate(
self.sim_data.process.translation.monomer_data
)
},
"monomer_index_to_tu_indexes": self.sim_data.relation.monomer_index_to_tu_indexes,
"ribosome30S": self.sim_data.molecule_ids.s30_full_complex,
"ribosome50S": self.sim_data.molecule_ids.s50_full_complex,
"seed": self._seedFromName("PolypeptideInitiation"),
"monomer_ids": self.sim_data.process.translation.monomer_data["id"],
"emit_unique": self.emit_unique,
}
return polypeptide_initiation_config
[docs]
def get_polypeptide_elongation_config(self, time_step=1):
constants = self.sim_data.constants
molecule_ids = self.sim_data.molecule_ids
translation = self.sim_data.process.translation
transcription = self.sim_data.process.transcription
metabolism = self.sim_data.process.metabolism
polypeptide_elongation_config = {
"time_step": time_step,
# simulation options
"aa_supply_in_charging": self.aa_supply_in_charging,
"adjust_timestep_for_charging": self.adjust_timestep_for_charging,
"mechanistic_translation_supply": self.mechanistic_translation_supply,
"mechanistic_aa_transport": self.mechanistic_aa_transport,
"ppgpp_regulation": self.ppgpp_regulation,
"disable_ppgpp_elongation_inhibition": self.disable_ppgpp_elongation_inhibition,
"variable_elongation": self.variable_elongation_translation,
"translation_supply": self.translation_supply,
"trna_charging": self.trna_charging,
# base parameters
"max_time_step": translation.max_time_step,
"n_avogadro": constants.n_avogadro,
"proteinIds": translation.monomer_data["id"],
"proteinLengths": translation.monomer_data["length"].asNumber(),
"proteinSequences": translation.translation_sequences,
"aaWeightsIncorporated": translation.translation_monomer_weights,
"endWeight": translation.translation_end_weight,
"make_elongation_rates": translation.make_elongation_rates,
"next_aa_pad": translation.next_aa_pad,
"ribosomeElongationRate": float(
self.sim_data.growth_rate_parameters.ribosomeElongationRate.asNumber(
units.aa / units.s
)
),
# Amino acid supply calculations
"translation_aa_supply": self.sim_data.translation_supply_rate,
"import_threshold": self.sim_data.external_state.import_constraint_threshold,
# Data structures for charging
"aa_from_trna": transcription.aa_from_trna,
# Growth associated maintenance energy requirements for elongations
"gtpPerElongation": constants.gtp_per_translation,
# Bulk molecules
"ribosome30S": self.sim_data.molecule_ids.s30_full_complex,
"ribosome50S": self.sim_data.molecule_ids.s50_full_complex,
"amino_acids": self.sim_data.molecule_groups.amino_acids,
# parameters for specific elongation models
"aa_exchange_names": np.array(
[
self.sim_data.external_state.env_to_exchange_map[aa[:-3]]
for aa in self.sim_data.molecule_groups.amino_acids
]
),
"basal_elongation_rate": self.sim_data.constants.ribosome_elongation_rate_basal.asNumber(
units.aa / units.s
),
"ribosomeElongationRateDict": self.sim_data.process.translation.ribosomeElongationRateDict,
"uncharged_trna_names": self.sim_data.process.transcription.uncharged_trna_names,
"proton": self.sim_data.molecule_ids.proton,
"water": self.sim_data.molecule_ids.water,
"cellDensity": constants.cell_density,
"elongation_max": (
constants.ribosome_elongation_rate_max
if self.variable_elongation_translation
else constants.ribosome_elongation_rate_basal
),
"aa_from_synthetase": transcription.aa_from_synthetase,
"charging_stoich_matrix": transcription.charging_stoich_matrix(),
"charged_trna_names": transcription.charged_trna_names,
"charging_molecule_names": transcription.charging_molecules,
"synthetase_names": transcription.synthetase_names,
"ppgpp_reaction_metabolites": metabolism.ppgpp_reaction_metabolites,
"elong_rate_by_ppgpp": self.sim_data.growth_rate_parameters.get_ribosome_elongation_rate_by_ppgpp,
"rela": molecule_ids.RelA,
"spot": molecule_ids.SpoT,
"ppgpp": molecule_ids.ppGpp,
"kS": constants.synthetase_charging_rate.asNumber(1 / units.s),
"KMaa": transcription.aa_kms.asNumber(MICROMOLAR_UNITS),
"KMtf": transcription.trna_kms.asNumber(MICROMOLAR_UNITS),
"krta": constants.Kdissociation_charged_trna_ribosome.asNumber(
MICROMOLAR_UNITS
),
"krtf": constants.Kdissociation_uncharged_trna_ribosome.asNumber(
MICROMOLAR_UNITS
),
"unit_conversion": metabolism.get_amino_acid_conc_conversion(
MICROMOLAR_UNITS
),
"KD_RelA": transcription.KD_RelA.asNumber(MICROMOLAR_UNITS),
"k_RelA": constants.k_RelA_ppGpp_synthesis.asNumber(1 / units.s),
"k_SpoT_syn": constants.k_SpoT_ppGpp_synthesis.asNumber(1 / units.s),
"k_SpoT_deg": constants.k_SpoT_ppGpp_degradation.asNumber(
1 / (MICROMOLAR_UNITS * units.s)
),
"KI_SpoT": transcription.KI_SpoT.asNumber(MICROMOLAR_UNITS),
"ppgpp_reaction_stoich": metabolism.ppgpp_reaction_stoich,
"synthesis_index": metabolism.ppgpp_reaction_names.index(
metabolism.ppgpp_synthesis_reaction
),
"degradation_index": metabolism.ppgpp_reaction_names.index(
metabolism.ppgpp_degradation_reaction
),
"aa_supply_scaling": metabolism.aa_supply_scaling,
"aa_enzymes": metabolism.aa_enzymes,
"amino_acid_synthesis": metabolism.amino_acid_synthesis,
"amino_acid_import": metabolism.amino_acid_import,
"amino_acid_export": metabolism.amino_acid_export,
"aa_importers": metabolism.aa_importer_names,
"aa_exporters": metabolism.aa_exporter_names,
"get_pathway_enzyme_counts_per_aa": metabolism.get_pathway_enzyme_counts_per_aa,
"import_constraint_threshold": self.sim_data.external_state.import_constraint_threshold,
"seed": self._seedFromName("PolypeptideElongation"),
"emit_unique": self.emit_unique,
}
return polypeptide_elongation_config
[docs]
def get_complexation_config(self, time_step=1):
complexation_config = {
"time_step": time_step,
"stoichiometry": self.sim_data.process.complexation.stoich_matrix()
.astype(np.int64)
.T,
"rates": self.sim_data.process.complexation.rates,
"molecule_names": self.sim_data.process.complexation.molecule_names,
"seed": self._seedFromName("Complexation"),
"reaction_ids": self.sim_data.process.complexation.ids_reactions,
"complex_ids": self.sim_data.process.complexation.ids_complexes,
"emit_unique": self.emit_unique,
}
return complexation_config
[docs]
def get_two_component_system_config(self, time_step=1):
two_component_system_config = {
"time_step": time_step,
"jit": False,
# TODO -- wcEcoli has this in 1/mmol, why?
"n_avogadro": self.sim_data.constants.n_avogadro.asNumber(1 / units.mmol),
"cell_density": self.sim_data.constants.cell_density.asNumber(
units.g / units.L
),
"moleculesToNextTimeStep": self.sim_data.process.two_component_system.molecules_to_next_time_step,
"moleculeNames": self.sim_data.process.two_component_system.molecule_names,
"seed": self._seedFromName("TwoComponentSystem"),
"emit_unique": self.emit_unique,
}
# return two_component_system_config, stoichI, stoichJ, stoichV
return two_component_system_config
[docs]
def get_equilibrium_config(self, time_step=1):
equilibrium_config = {
"time_step": time_step,
"jit": False,
"n_avogadro": self.sim_data.constants.n_avogadro.asNumber(1 / units.mol),
"cell_density": self.sim_data.constants.cell_density.asNumber(
units.g / units.L
),
"stoichMatrix": self.sim_data.process.equilibrium.stoich_matrix().astype(
np.int64
),
"fluxesAndMoleculesToSS": self.sim_data.process.equilibrium.fluxes_and_molecules_to_SS,
"moleculeNames": self.sim_data.process.equilibrium.molecule_names,
"seed": self._seedFromName("Equilibrium"),
"complex_ids": self.sim_data.process.equilibrium.ids_complexes,
"reaction_ids": self.sim_data.process.equilibrium.rxn_ids,
"emit_unique": self.emit_unique,
}
return equilibrium_config
[docs]
def get_protein_degradation_config(self, time_step=1):
protein_degradation_config = {
"time_step": time_step,
"raw_degradation_rate": self.sim_data.process.translation.monomer_data[
"deg_rate"
].asNumber(1 / units.s),
"water_id": self.sim_data.molecule_ids.water,
"amino_acid_ids": self.sim_data.molecule_groups.amino_acids,
"amino_acid_counts": self.sim_data.process.translation.monomer_data[
"aa_counts"
].asNumber(),
"protein_ids": self.sim_data.process.translation.monomer_data["id"],
"protein_lengths": self.sim_data.process.translation.monomer_data[
"length"
].asNumber(),
"seed": self._seedFromName("ProteinDegradation"),
"emit_unique": self.emit_unique,
}
return protein_degradation_config
[docs]
def get_mass_config(self, time_step=1):
bulk_ids = self.sim_data.internal_state.bulk_molecules.bulk_data["id"]
molecular_weights = {}
for molecule_id in bulk_ids:
molecular_weights[molecule_id] = self.sim_data.getter.get_mass(
molecule_id
).asNumber(units.fg / units.mol)
# unique molecule masses
unique_masses = {}
uniqueMoleculeMasses = (
self.sim_data.internal_state.unique_molecule.unique_molecule_masses
)
for id_, mass in zip(uniqueMoleculeMasses["id"], uniqueMoleculeMasses["mass"]):
unique_masses[id_] = (mass / self.sim_data.constants.n_avogadro).asNumber(
units.fg
)
mass_config = {
"molecular_weights": molecular_weights,
"unique_masses": unique_masses,
"cellDensity": self.sim_data.constants.cell_density.asNumber(
units.g / units.L
),
"water_id": "WATER[c]",
"emit_unique": self.emit_unique,
}
return mass_config
[docs]
def get_mass_listener_config(self, time_step=1):
u_masses = self.sim_data.internal_state.unique_molecule.unique_molecule_masses
molecule_ids = tuple(sorted(u_masses["id"]))
molecule_id_to_mass = {}
for id_, mass in zip(u_masses["id"], u_masses["mass"]):
molecule_id_to_mass[id_] = (
mass / self.sim_data.constants.n_avogadro
).asNumber(units.fg)
molecule_masses = np.array([molecule_id_to_mass[x] for x in molecule_ids])
mass_config = {
"cellDensity": self.sim_data.constants.cell_density.asNumber(
units.g / units.L
),
"bulk_ids": self.sim_data.internal_state.bulk_molecules.bulk_data["id"],
"bulk_masses": self.sim_data.internal_state.bulk_molecules.bulk_data[
"mass"
].asNumber(units.fg / units.mol)
/ self.sim_data.constants.n_avogadro.asNumber(1 / units.mol),
"unique_ids": molecule_ids,
"unique_masses": molecule_masses,
"compartment_abbrev_to_index": self.sim_data.compartment_abbrev_to_index,
"expectedDryMassIncreaseDict": self.sim_data.expectedDryMassIncreaseDict,
"compartment_indices": {
"projection": self.sim_data.compartment_id_to_index[
"CCO-CELL-PROJECTION"
],
"cytosol": self.sim_data.compartment_id_to_index["CCO-CYTOSOL"],
"extracellular": self.sim_data.compartment_id_to_index[
"CCO-EXTRACELLULAR"
],
"flagellum": self.sim_data.compartment_id_to_index["CCO-FLAGELLUM"],
"membrane": self.sim_data.compartment_id_to_index["CCO-MEMBRANE"],
"outer_membrane": self.sim_data.compartment_id_to_index[
"CCO-OUTER-MEM"
],
"periplasm": self.sim_data.compartment_id_to_index["CCO-PERI-BAC"],
"pilus": self.sim_data.compartment_id_to_index["CCO-PILUS"],
"inner_membrane": self.sim_data.compartment_id_to_index[
"CCO-PM-BAC-NEG"
],
},
"compartment_id_to_index": self.sim_data.compartment_id_to_index,
"n_avogadro": self.sim_data.constants.n_avogadro, # 1/mol
"time_step": time_step,
"submass_to_idx": self.sim_data.submass_name_to_index,
"condition_to_doubling_time": self.sim_data.condition_to_doubling_time,
"condition": self.sim_data.condition,
"emit_unique": self.emit_unique,
}
return mass_config
[docs]
def get_rna_counts_listener_config(self, time_step=1):
counts_config = {
"time_step": time_step,
"all_TU_ids": self.sim_data.process.transcription.rna_data["id"],
"mRNA_indexes": np.where(
self.sim_data.process.transcription.rna_data["is_mRNA"]
)[0],
"rRNA_indexes": np.where(
self.sim_data.process.transcription.rna_data["is_rRNA"]
)[0],
"all_cistron_ids": self.sim_data.process.transcription.cistron_data["id"],
"cistron_is_mRNA": self.sim_data.process.transcription.cistron_data[
"is_mRNA"
],
"cistron_is_rRNA": self.sim_data.process.transcription.cistron_data[
"is_rRNA"
],
"cistron_tu_mapping_matrix": self.sim_data.process.transcription.cistron_tu_mapping_matrix,
"emit_unique": self.emit_unique,
}
counts_config["mRNA_TU_ids"] = counts_config["all_TU_ids"][
counts_config["mRNA_indexes"]
]
counts_config["rRNA_TU_ids"] = counts_config["all_TU_ids"][
counts_config["rRNA_indexes"]
]
counts_config["mRNA_cistron_ids"] = counts_config["all_cistron_ids"][
counts_config["cistron_is_mRNA"]
]
counts_config["rRNA_cistron_ids"] = counts_config["all_cistron_ids"][
counts_config["cistron_is_rRNA"]
]
return counts_config
[docs]
def get_monomer_counts_listener_config(self, time_step=1):
monomer_counts_config = {
"time_step": time_step,
# Get IDs of all bulk molecules
"bulk_molecule_ids": self.sim_data.internal_state.bulk_molecules.bulk_data[
"id"
],
"unique_ids": self.sim_data.internal_state.unique_molecule.unique_molecule_masses[
"id"
],
# Get IDs of molecules involved in complexation and equilibrium
"complexation_molecule_ids": self.sim_data.process.complexation.molecule_names,
"complexation_complex_ids": self.sim_data.process.complexation.ids_complexes,
"equilibrium_molecule_ids": self.sim_data.process.equilibrium.molecule_names,
"equilibrium_complex_ids": self.sim_data.process.equilibrium.ids_complexes,
"monomer_ids": self.sim_data.process.translation.monomer_data[
"id"
].tolist(),
# Get IDs of complexed molecules monomers involved in two component system
"two_component_system_molecule_ids": list(
self.sim_data.process.two_component_system.molecule_names
),
"two_component_system_complex_ids": list(
self.sim_data.process.two_component_system.complex_to_monomer.keys()
),
# Get IDs of ribosome subunits
"ribosome_50s_subunits": self.sim_data.process.complexation.get_monomers(
self.sim_data.molecule_ids.s50_full_complex
),
"ribosome_30s_subunits": self.sim_data.process.complexation.get_monomers(
self.sim_data.molecule_ids.s30_full_complex
),
# Get IDs of RNA polymerase subunits
"rnap_subunits": self.sim_data.process.complexation.get_monomers(
self.sim_data.molecule_ids.full_RNAP
),
# Get IDs of replisome subunits
"replisome_trimer_subunits": self.sim_data.molecule_groups.replisome_trimer_subunits,
"replisome_monomer_subunits": self.sim_data.molecule_groups.replisome_monomer_subunits,
# Get stoichiometric matrices for complexation, equilibrium, two component system and the
# assembly of unique molecules
"complexation_stoich": self.sim_data.process.complexation.stoich_matrix_monomers(),
"equilibrium_stoich": self.sim_data.process.equilibrium.stoich_matrix_monomers(),
"two_component_system_stoich": self.sim_data.process.two_component_system.stoich_matrix_monomers(),
"emit_unique": self.emit_unique,
}
return monomer_counts_config
[docs]
def get_allocator_config(self, time_step=1, process_names=None):
if not process_names:
process_names = []
allocator_config = {
"time_step": time_step,
"molecule_names": self.sim_data.internal_state.bulk_molecules.bulk_data[
"id"
],
# Allocator is built into BulkMolecules container in wcEcoli
"seed": self._seedFromName("BulkMolecules"),
"process_names": process_names,
"custom_priorities": {
"ecoli-rna-degradation": 10,
"ecoli-protein-degradation": 10,
"ecoli-two-component-system": -5,
"ecoli-tf-binding": -10,
"ecoli-metabolism": -10,
},
"emit_unique": self.emit_unique,
}
return allocator_config
[docs]
def get_chromosome_structure_config(self, time_step=1):
transcription = self.sim_data.process.transcription
mature_rna_ids = transcription.mature_rna_data["id"]
unprocessed_rna_indexes = np.where(transcription.rna_data["is_unprocessed"])[0]
chromosome_structure_config = {
"time_step": time_step,
# Load parameters
"rna_sequences": transcription.transcription_sequences,
"protein_sequences": self.sim_data.process.translation.translation_sequences,
"n_TUs": len(transcription.rna_data),
"n_TFs": len(self.sim_data.process.transcription_regulation.tf_ids),
"rna_ids": transcription.rna_data["id"],
"n_amino_acids": len(self.sim_data.molecule_groups.amino_acids),
"n_fragment_bases": len(self.sim_data.molecule_groups.polymerized_ntps),
"replichore_lengths": self.sim_data.process.replication.replichore_lengths,
"relaxed_DNA_base_pairs_per_turn": self.sim_data.process.chromosome_structure.relaxed_DNA_base_pairs_per_turn,
"terC_index": self.sim_data.process.chromosome_structure.terC_dummy_molecule_index,
"n_mature_rnas": len(mature_rna_ids),
"mature_rna_ids": mature_rna_ids,
"mature_rna_end_positions": transcription.mature_rna_end_positions,
"mature_rna_nt_counts": transcription.mature_rna_data["counts_ACGU"]
.asNumber(units.nt)
.astype(int),
"unprocessed_rna_index_mapping": {
rna_index: i for (i, rna_index) in enumerate(unprocessed_rna_indexes)
},
"calculate_superhelical_densities": self.superhelical_density,
# Get placeholder value for chromosome domains without children
"no_child_place_holder": self.sim_data.process.replication.no_child_place_holder,
# Load bulk molecule views
"inactive_RNAPs": self.sim_data.molecule_ids.full_RNAP,
"fragmentBases": self.sim_data.molecule_groups.polymerized_ntps,
"ppi": self.sim_data.molecule_ids.ppi,
"active_tfs": [
x + "[c]" for x in self.sim_data.process.transcription_regulation.tf_ids
],
"ribosome_30S_subunit": self.sim_data.molecule_ids.s30_full_complex,
"ribosome_50S_subunit": self.sim_data.molecule_ids.s50_full_complex,
"amino_acids": self.sim_data.molecule_groups.amino_acids,
"water": self.sim_data.molecule_ids.water,
"seed": self._seedFromName("ChromosomeStructure"),
"emit_unique": self.emit_unique,
}
return chromosome_structure_config
[docs]
def get_rna_interference_config(self, time_step=1):
rna_interference_config = {
"time_step": time_step,
"srna_ids": self.srna_ids,
"target_tu_ids": self.target_tu_ids,
"binding_probs": self.binding_probs,
"duplex_ids": self.duplex_ids,
"ribosome30S": self.sim_data.molecule_ids.s30_full_complex,
"ribosome50S": self.sim_data.molecule_ids.s50_full_complex,
"seed": self.random_state.randint(RAND_MAX),
"emit_unique": self.emit_unique,
}
return rna_interference_config
[docs]
def get_tetracycline_ribosome_equilibrium_config(self, time_step=1):
rna_ids = self.sim_data.process.transcription.rna_data["id"]
is_trna = self.sim_data.process.transcription.rna_data["is_tRNA"].astype(
np.bool_
)
tetracycline_ribosome_equilibrium_config = {
"time_step": time_step,
"trna_ids": rna_ids[is_trna],
# Ensure that a new seed is set upon division
"seed": self.random_state.randint(RAND_MAX),
"emit_unique": self.emit_unique,
}
return tetracycline_ribosome_equilibrium_config
[docs]
def get_rna_maturation_config(self, time_step=1):
transcription = self.sim_data.process.transcription
rna_data = transcription.rna_data
mature_rna_data = transcription.mature_rna_data
config = {
"time_step": time_step,
# Get matrices and vectors that describe maturation reactions
"stoich_matrix": transcription.rna_maturation_stoich_matrix,
"enzyme_matrix": transcription.rna_maturation_enzyme_matrix.astype(int),
"degraded_nt_counts": transcription.rna_maturation_degraded_nt_counts,
# Get rRNA IDs
"main_23s_rRNA_id": self.sim_data.molecule_groups.s50_23s_rRNA[0],
"main_16s_rRNA_id": self.sim_data.molecule_groups.s30_16s_rRNA[0],
"main_5s_rRNA_id": self.sim_data.molecule_groups.s50_5s_rRNA[0],
"variant_23s_rRNA_ids": self.sim_data.molecule_groups.s50_23s_rRNA[1:],
"variant_16s_rRNA_ids": self.sim_data.molecule_groups.s30_16s_rRNA[1:],
"variant_5s_rRNA_ids": self.sim_data.molecule_groups.s50_5s_rRNA[1:],
"unprocessed_rna_ids": rna_data["id"][rna_data["is_unprocessed"]],
"mature_rna_ids": transcription.mature_rna_data["id"],
"rna_maturation_enzyme_ids": transcription.rna_maturation_enzymes,
# Other bulk IDs
"fragment_bases": self.sim_data.molecule_groups.polymerized_ntps,
"ppi": self.sim_data.molecule_ids.ppi,
"water": self.sim_data.molecule_ids.water,
"nmps": self.sim_data.molecule_groups.nmps,
"proton": self.sim_data.molecule_ids.proton,
"emit_unique": self.emit_unique,
}
config["n_required_enzymes"] = config["enzyme_matrix"].sum(axis=1)
config["n_ppi_added"] = config["stoich_matrix"].toarray().sum(axis=0) - 1
# Calculate number of NMPs that should be added when consolidating rRNA
# molecules
counts_ACGU = np.vstack(
(
rna_data["counts_ACGU"].asNumber(units.nt),
mature_rna_data["counts_ACGU"].asNumber(units.nt),
)
)
rna_id_to_index = {
rna_id: i
for i, rna_id in enumerate(chain(rna_data["id"], mature_rna_data["id"]))
}
def calculate_delta_nt_counts(main_id, variant_ids):
main_index = rna_id_to_index[main_id]
variant_indexes = np.array(
[rna_id_to_index[rna_id] for rna_id in variant_ids]
)
delta_nt_counts = (
counts_ACGU[variant_indexes, :] - counts_ACGU[main_index, :]
)
return delta_nt_counts
config["delta_nt_counts_23s"] = calculate_delta_nt_counts(
config["main_23s_rRNA_id"], config["variant_23s_rRNA_ids"]
)
config["delta_nt_counts_16s"] = calculate_delta_nt_counts(
config["main_16s_rRNA_id"], config["variant_16s_rRNA_ids"]
)
config["delta_nt_counts_5s"] = calculate_delta_nt_counts(
config["main_5s_rRNA_id"], config["variant_5s_rRNA_ids"]
)
return config
[docs]
def get_tf_unbinding_config(self, time_step=1):
config = {
"time_step": time_step,
"tf_ids": self.sim_data.process.transcription_regulation.tf_ids,
"submass_indices": self.submass_indices,
"emit_unique": self.emit_unique,
}
# Build array of active TF masses
bulk_ids = self.sim_data.internal_state.bulk_molecules.bulk_data["id"]
tf_indexes = [
np.where(bulk_ids == tf_id + "[c]")[0][0] for tf_id in config["tf_ids"]
]
config["active_tf_masses"] = (
self.sim_data.internal_state.bulk_molecules.bulk_data["mass"][tf_indexes]
/ self.sim_data.constants.n_avogadro
).asNumber(units.fg)
return config
[docs]
def get_rna_synth_prob_listener_config(self, time_step=1):
return {
"time_step": time_step,
"gene_ids": self.sim_data.process.transcription.cistron_data["gene_id"],
"rna_ids": self.sim_data.process.transcription.rna_data["id"],
"tf_ids": self.sim_data.process.transcription_regulation.tf_ids,
"cistron_ids": self.sim_data.process.transcription.cistron_data["gene_id"],
"cistron_tu_mapping_matrix": self.sim_data.process.transcription.cistron_tu_mapping_matrix,
"emit_unique": self.emit_unique,
}
[docs]
def get_dna_supercoiling_listener_config(self, time_step=1):
return {
"time_step": time_step,
"relaxed_DNA_base_pairs_per_turn": self.sim_data.process.chromosome_structure.relaxed_DNA_base_pairs_per_turn,
"emit_unique": self.emit_unique,
}
[docs]
def get_unique_molecule_counts_config(self, time_step=1):
return {
"time_step": time_step,
"unique_ids": self.sim_data.internal_state.unique_molecule.unique_molecule_masses[
"id"
],
"emit_unique": self.emit_unique,
}
[docs]
def get_ribosome_data_listener_config(self, time_step=1):
return {
"time_step": time_step,
"monomer_ids": self.sim_data.process.translation.monomer_data[
"id"
].tolist(),
"rRNA_cistron_tu_mapping_matrix": self.sim_data.process.transcription.rRNA_cistron_tu_mapping_matrix,
"rRNA_is_5S": self.sim_data.process.transcription.cistron_data[
"is_5S_rRNA"
][self.sim_data.process.transcription.cistron_data["is_rRNA"]],
"rRNA_is_16S": self.sim_data.process.transcription.cistron_data[
"is_16S_rRNA"
][self.sim_data.process.transcription.cistron_data["is_rRNA"]],
"rRNA_is_23S": self.sim_data.process.transcription.cistron_data[
"is_23S_rRNA"
][self.sim_data.process.transcription.cistron_data["is_rRNA"]],
"emit_unique": self.emit_unique,
}
[docs]
def get_rnap_data_listener_config(self, time_step=1):
return {
"time_step": time_step,
"stable_RNA_indexes": np.where(
np.logical_or(
self.sim_data.process.transcription.rna_data["is_rRNA"],
self.sim_data.process.transcription.rna_data["is_tRNA"],
)
)[0],
"cistron_ids": self.sim_data.process.transcription.cistron_data["id"],
"cistron_tu_mapping_matrix": self.sim_data.process.transcription.cistron_tu_mapping_matrix,
"emit_unique": self.emit_unique,
}
[docs]
def get_exchange_data_config(self, time_step=1):
return {
"time_step": time_step,
"external_state": self.sim_data.external_state,
"environment_molecules": list(
self.sim_data.external_state.env_to_exchange_map.keys()
),
}
[docs]
def get_bulk_timeline_config(self, time_step=1):
# if current_timeline_id is specified by a variant in sim_data, look it up in saved_timelines.
if self.sim_data.external_state.current_timeline_id:
current_timeline = self.sim_data.external_state.saved_timelines[
self.sim_data.external_state.current_timeline_id
]
else:
current_timeline = self.media_timeline
return {
"time_step": time_step,
"timeline": {
time: {("media_id",): media_id} for time, media_id in current_timeline
},
}
[docs]
def generate_initial_state(self):
"""
Calculate the initial conditions for a new cell without inherited state
from a parent cell.
"""
mass_coeff = 1.0
if self.mass_distribution:
mass_coeff = self.random_state.normal(loc=1.0, scale=0.1)
# if current_timeline_id is specified by a variant in sim_data,
# look it up in saved_timelines.
if self.sim_data.external_state.current_timeline_id:
current_timeline = self.sim_data.external_state.saved_timelines[
self.sim_data.external_state.current_timeline_id
]
else:
current_timeline = self.media_timeline
media_id = current_timeline[0][1]
current_concentrations = self.sim_data.external_state.saved_media[media_id]
exch_from_conc = self.sim_data.external_state.exchange_data_from_concentrations
exchange_data = exch_from_conc(current_concentrations)
unconstrained = exchange_data["importUnconstrainedExchangeMolecules"]
constrained = exchange_data["importConstrainedExchangeMolecules"]
import_molecules = set(unconstrained) | set(constrained)
bulk_state = initialize_bulk_counts(
self.sim_data,
media_id,
import_molecules,
self.random_state,
mass_coeff,
self.ppgpp_regulation,
self.trna_attenuation,
)
cell_mass = calculate_cell_mass(bulk_state, {}, self.sim_data)
# Create new PRNG for unique ID generation so self.random_state
# can be used to faithfully replicate wcEcoli behavior
unique_id_rng = np.random.RandomState(seed=self.seed + 100)
unique_molecules = initialize_unique_molecules(
bulk_state,
self.sim_data,
cell_mass,
self.random_state,
unique_id_rng,
self.superhelical_density,
self.ppgpp_regulation,
self.trna_attenuation,
self.mechanistic_replisome,
)
if self.trna_charging:
initialize_trna_charging(
bulk_state,
unique_molecules,
self.sim_data,
self.variable_elongation_translation,
)
cell_mass = calculate_cell_mass(bulk_state, unique_molecules, self.sim_data)
set_small_molecule_counts(
bulk_state["count"],
self.sim_data,
media_id,
import_molecules,
mass_coeff,
cell_mass,
)
# Numpy arrays are read-only outside of updaters for safety
bulk_state.flags.writeable = False
for unique_state in unique_molecules.values():
unique_state.flags.writeable = False
return {
"bulk": bulk_state,
"unique": unique_molecules,
"environment": {
"exchange": {mol: 0 for mol in current_concentrations},
"exchange_data": {
"unconstrained": sorted(unconstrained),
"constrained": constrained,
},
"media_id": media_id,
},
"boundary": {
"external": {
mol: conc * vivunits.mM
for mol, conc in current_concentrations.items()
}
},
}