"""
=====================
Chemoreceptor Cluster
=====================
This ReceptorCluster :term:`Process` models the activity of a chemoreceptor cluster
composed of Tsr and Tar amino acid chemoreceptors. The model is a
Monod-Wyman-Changeux (MWC) model adapted from "Endres, R. G., & Wingreen, N. S.
(2006). Precise adaptation in bacterial chemotaxis through assistance neighborhoods”.
Each receptor homodimer is modeled as a two-state system (on or off) with energy
values based on ligand concentration and methylation levels. This results in four
energy levels: 1) on without ligand, on with ligand, off without ligand, off with
ligand. Sensory adaptation comes from the methylation of receptors, which alters the
free-energy offset and transition rate to favor the on state; attractant ligand
binding favors the off state.
"""
import os
import math
import random
from matplotlib import pyplot as plt
# vivarium-core imports
from vivarium.core.composition import simulate_process, PROCESS_OUT_DIR
from vivarium.core.process import Process
from vivarium.library.units import units
NAME = "chemoreceptor_cluster"
STEADY_STATE_DELTA = 1e-6
DEFAULT_ENVIRONMENT_PORT = ("external",)
DEFAULT_LIGAND = "MeAsp"
DEFAULT_INITIAL_LIGAND = 1e-2
[docs]
def run_step(receptor, state, timestep):
    """
    Run for a timestep, and update the chemoreceptor_activity and n_methyl states
    """
    update = receptor.next_update(timestep, state)
    state["internal"]["chemoreceptor_activity"] = update["internal"][
        "chemoreceptor_activity"
    ]
    state["internal"]["n_methyl"] = update["internal"]["n_methyl"] 
[docs]
def run_to_steady_state(receptor, state, timestep):
    """Runs the ReceptorCluster Process to steady state
    This is used for initialization of the Process, so that
    the chemoreceptors start off in an adapted state.
    """
    P_on = state["internal"]["chemoreceptor_activity"]
    n_methyl = state["internal"]["n_methyl"]
    delta = 1
    while delta > STEADY_STATE_DELTA:
        run_step(receptor, state, timestep)
        d_P_on = P_on - state["internal"]["chemoreceptor_activity"]
        d_n_methyl = n_methyl - state["internal"]["n_methyl"]
        delta = (d_P_on**2 + d_n_methyl**2) ** 0.5
        P_on = state["internal"]["chemoreceptor_activity"]
        n_methyl = state["internal"]["n_methyl"] 
[docs]
class ReceptorCluster(Process):
    """Models the activity of a chemoreceptor cluster
    :term:`Ports`:
    * **internal**: Expects a :term:`store` with 'chemoreceptor_activity',
      'CheR', 'CheB', 'CheB_P', and 'n_methyl'.
    * **external**: Expects a :term:`store` with the ligand.
    Arguments:
        parameters: A dictionary of configuration options.
            The following configuration options may be provided:
            * **ligand_id** (:py:class:`str`): The name of the external
              ligand sensed by the cluster.
            * **initial_ligand** (:py:class:`float`): The initial concentration
              of the ligand. The initial state of the cluster is set to
              steady state relative to this concetnration.
            * **n_Tar** (:py:class:`int`): number of Tar receptors in a cluster
            * **n_Tsr** (:py:class:`int`): number of Tsr receptors in a cluster
            * **K_Tar_off** (:py:class:`float`): (mM) MeAsp binding by Tar (Endres06)
            * **K_Tar_on** (:py:class:`float`): (mM) MeAsp binding by Tar (Endres06)
            * **K_Tsr_off** (:py:class:`float`): (mM) MeAsp binding by Tsr (Endres06)
            * **K_Tsr_on** (:py:class:`float`): (mM) MeAsp binding by Tsr (Endres06)
            * **k_meth** (:py:class:`float`): Catalytic rate of methylation
            * **k_demeth** (:py:class:`float`): Catalytic rate of demethylation
            * **adapt_rate** (:py:class:`float`): adaptation rate relative to wild-type.
              cell-to-cell variation cause by variability in CheR and CheB
    .. note::
        * dissociation constants (mM)
        * K_Tar_on = 12e-3  # Tar to Asp (Emonet05)
        * K_Tar_off = 1.7e-3  # Tar to Asp (Emonet05)
        * (Endres & Wingreen, 2006) has dissociation constants for serine binding, NiCl2 binding
    """
    name = NAME
    defaults = {
        "ligand_id": "MeAsp",
        "initial_ligand": 5.0,
        "initial_internal_state": {
            "n_methyl": 2.0,  # initial number of methyl groups on receptor cluster (0 to 8)
            "chemoreceptor_activity": 1.0
            / 3.0,  # initial probability of receptor cluster being on
            "CheR": 0.00016,  # (mM) wild type concentration. 0.16 uM = 0.00016 mM
            "CheB": 0.00028,  # (mM) wild type concentration. 0.28 uM = 0.00028 mM. [CheR]:[CheB]=0.16:0.28
            "CheB_P": 0.0,  # phosphorylated CheB
        },
        # Parameters from Endres and Wingreen 2006.
        "n_Tar": 6,
        "n_Tsr": 12,
        "K_Tar_off": 0.02,
        "K_Tar_on": 0.5,
        "K_Tsr_off": 100.0,
        "K_Tsr_on": 10e6,
        "k_meth": 0.0625,
        "k_demeth": 0.0714,
        "adapt_rate": 1.2,
    }
    def __init__(self, parameters=None):
        super().__init__(parameters)
        # initialize the state by running until steady
        initial_internal_state = self.parameters["initial_internal_state"]
        ligand_id = self.parameters["ligand_id"]
        initial_ligand = self.parameters["initial_ligand"]
        self.initial_state = {
            "internal": initial_internal_state,
            "external": {ligand_id: initial_ligand},
        }
        run_to_steady_state(self, self.initial_state, 1.0)
[docs]
    def ports_schema(self):
        """
        initialize **internal** and **external** ports
        """
        ports = [
            "internal",
            "external",
        ]
        schema = {port: {} for port in ports}
        # external
        for state in list(self.initial_state["external"].keys()):
            schema["external"][state] = {
                "_default": self.initial_state["external"][state],
                "_emit": True,
            }
        # internal
        set_update = ["chemoreceptor_activity", "n_methyl"]
        for state in list(self.initial_state["internal"].keys()):
            schema["internal"][state] = {
                "_default": self.initial_state["internal"][state],
                "_emit": True,
            }
            if state in set_update:
                schema["internal"][state]["_updater"] = "set"
        return schema 
[docs]
    def next_update(self, timestep, states):
        """
        calculate update to chemoreceptor_activity and n_methyl from ligand concentration, CheR, and CheB
        """
        # parameters
        n_Tar = self.parameters["n_Tar"]
        n_Tsr = self.parameters["n_Tsr"]
        K_Tar_off = self.parameters["K_Tar_off"]
        K_Tar_on = self.parameters["K_Tar_on"]
        K_Tsr_off = self.parameters["K_Tsr_off"]
        K_Tsr_on = self.parameters["K_Tsr_on"]
        adapt_rate = self.parameters["adapt_rate"]
        k_meth = self.parameters["k_meth"]
        k_demeth = self.parameters["k_demeth"]
        # states
        n_methyl = states["internal"]["n_methyl"]
        P_on = states["internal"]["chemoreceptor_activity"]
        CheR = states["internal"]["CheR"] * (units.mmol / units.L)
        CheB = states["internal"]["CheB"] * (units.mmol / units.L)
        ligand_conc = states["external"][self.parameters["ligand_id"]]
        # convert to umol / L
        CheR = CheR.to("umol/L").magnitude
        CheB = CheB.to("umol/L").magnitude
        if n_methyl < 0:
            n_methyl = 0
        elif n_methyl > 8:
            n_methyl = 8
        else:
            d_methyl = (
                adapt_rate
                * (k_meth * CheR * (1.0 - P_on) - k_demeth * CheB * P_on)
                * timestep
            )
            n_methyl += d_methyl
        # get free-energy offsets from methylation
        # piece-wise linear model. Assumes same offset energy (epsilon) for both Tar and Tsr
        if n_methyl < 0:
            offset_energy = 1.0
        elif n_methyl < 2:
            offset_energy = 1.0 - 0.5 * n_methyl
        elif n_methyl < 4:
            offset_energy = -0.3 * (n_methyl - 2.0)
        elif n_methyl < 6:
            offset_energy = -0.6 - 0.25 * (n_methyl - 4.0)
        elif n_methyl < 7:
            offset_energy = -1.1 - 0.9 * (n_methyl - 6.0)
        elif n_methyl < 8:
            offset_energy = -2.0 - (n_methyl - 7.0)
        else:
            offset_energy = -3.0
        # free energy of the receptors.
        Tar_free_energy = n_Tar * (
            offset_energy
            + math.log((1 + ligand_conc / K_Tar_off) / (1 + ligand_conc / K_Tar_on))
        )
        Tsr_free_energy = n_Tsr * (
            offset_energy
            + math.log((1 + ligand_conc / K_Tsr_off) / (1 + ligand_conc / K_Tsr_on))
        )
        # free energy of receptor clusters
        cluster_free_energy = Tar_free_energy + Tsr_free_energy
        P_on = 1.0 / (
            1.0 + math.exp(cluster_free_energy)
        )  # probability that receptor cluster is ON
        return {
            "internal": {
                "chemoreceptor_activity": P_on,
                "n_methyl": n_methyl,
            }
        } 
 
# tests and analyses of process
[docs]
def get_pulse_timeline(ligand="MeAsp"):
    """
    get a timeline with pulses applied to the external ligand
    """
    timeline = [
        (0, {("external", ligand): 0.0}),
        (100, {("external", ligand): 0.01}),
        (200, {("external", ligand): 0.0}),
        (300, {("external", ligand): 0.1}),
        (400, {("external", ligand): 0.0}),
        (500, {("external", ligand): 1.0}),
        (600, {("external", ligand): 0.0}),
        (700, {("external", ligand): 0.0}),
    ]
    return timeline 
[docs]
def get_exponential_random_timeline(config):
    """
    get timeline with random walk in exponential space
    """
    time = config.get("time", 100)
    timestep = config.get("timestep", 1)
    base = config.get("base", 1 + 1e-4)  # mM/um
    speed = config.get("speed", 14)  # um/s
    conc_0 = config.get("initial_conc", 0)  # mM
    ligand = config.get("ligand", "MeAsp")
    env_port = config.get("environment_port", DEFAULT_ENVIRONMENT_PORT)
    conc = conc_0
    timeline = [(0, {env_port + (ligand,): conc})]
    t = 0
    while t < time:
        conc += base ** (random.choice((-1, 1)) * speed) - 1
        if conc < 0:
            conc = 0
        timeline.append((t, {env_port + (ligand,): conc}))
        t += timestep
    return timeline 
[docs]
def get_brownian_ligand_timeline(
    environment_port=DEFAULT_ENVIRONMENT_PORT,
    ligand_id=DEFAULT_LIGAND,
    initial_conc=DEFAULT_INITIAL_LIGAND,
    total_time=10,
    timestep=1,
    base=1 + 3e-4,
    speed=14,
):
    return get_exponential_random_timeline(
        {
            "ligand": ligand_id,
            "environment_port": environment_port,
            "time": total_time,
            "timestep": timestep,
            "initial_conc": initial_conc,
            "base": base,
            "speed": speed,
        }
    ) 
def test_receptor(timeline=get_pulse_timeline(), return_data=False):
    ligand = "MeAsp"
    # initialize process
    initial_ligand = timeline[0][1][("external", ligand)]
    process_config = {"initial_ligand": initial_ligand}
    receptor = ReceptorCluster(process_config)
    # run experiment
    experiment_settings = {"timeline": {"timeline": timeline}}
    data = simulate_process(receptor, experiment_settings)
    if return_data:
        return data
[docs]
def plot_receptor_output(output, settings, out_dir="out", filename="response"):
    ligand_vec = output["external"]["MeAsp"]  # TODO -- configure ligand name
    receptor_activity_vec = output["internal"]["chemoreceptor_activity"]
    n_methyl_vec = output["internal"]["n_methyl"]
    time_vec = output["time"]
    aspect_ratio = settings.get("aspect_ratio", 1)
    fontsize = settings.get("fontsize", 12)
    # plot results
    cols = 1
    rows = 3
    width = 3
    height = width / aspect_ratio
    plt.figure(figsize=(width, height))
    plt.rc("font", size=fontsize)
    ax1 = plt.subplot(rows, cols, 1)
    ax2 = plt.subplot(rows, cols, 2)
    ax3 = plt.subplot(rows, cols, 3)
    ax1.plot(time_vec, ligand_vec, "steelblue")
    ax2.plot(time_vec, receptor_activity_vec, "steelblue")
    ax3.plot(time_vec, n_methyl_vec, "steelblue")
    ax1.set_xticklabels([])
    ax1.spines["right"].set_visible(False)
    ax1.spines["top"].set_visible(False)
    ax1.tick_params(right=False, top=False)
    ax1.set_ylabel("external ligand \n (mM) ", fontsize=fontsize)
    ax2.set_xticklabels([])
    ax2.spines["right"].set_visible(False)
    ax2.spines["top"].set_visible(False)
    ax2.tick_params(right=False, top=False)
    ax2.set_ylabel("cluster activity \n P(on)", fontsize=fontsize)
    ax3.spines["right"].set_visible(False)
    ax3.spines["top"].set_visible(False)
    ax3.tick_params(right=False, top=False)
    ax3.set_xlabel("time (s)", fontsize=12)
    ax3.set_ylabel("average \n methylation", fontsize=fontsize)
    fig_path = os.path.join(out_dir, filename)
    plt.subplots_adjust(wspace=0.7, hspace=0.3)
    plt.savefig(fig_path + ".png", bbox_inches="tight") 
[docs]
def main():
    out_dir = os.path.join(PROCESS_OUT_DIR, NAME)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    timeline = get_pulse_timeline()
    timeseries = test_receptor(timeline, return_data=True)
    plot_receptor_output(timeseries, {}, out_dir, "pulse")
    exponential_random_config = {"time": 60, "base": 1 + 4e-4, "speed": 14}
    timeline4 = get_exponential_random_timeline(exponential_random_config)
    output4 = test_receptor(timeline4, 0.1)
    plot_receptor_output(output4, {}, out_dir, "exponential_random") 
if __name__ == "__main__":
    main()