"""
======================
Partitioning Processes
======================
This bundle of processes includes Requester, Evolver, and PartitionedProcess.
PartitionedProcess is the inherited base class for all Processes that can be
partitioned; these processes provide calculate_request or evolve_state methods,
rather than the usual Process next_update.
A PartitionedProcess can be passed into a Requester and Evolver, which call its
calculate_request and evolve_state methods in coordination with an Allocator process,
which reads the requests and allocates molecular counts for the evolve_state.
"""
import abc
import warnings
from vivarium.core.process import Step, Process
from vivarium.library.dict_utils import deep_merge
from ecoli.processes.registries import topology_registry
[docs]
class Requester(Step):
    """Requester Step
    Accepts a PartitionedProcess as an input, and runs in coordination with an
    Evolver that uses the same PartitionedProcess.
    """
    defaults = {"process": None}
    def __init__(self, parameters=None):
        assert isinstance(parameters["process"], PartitionedProcess)
        if parameters["process"].parallel:
            raise RuntimeError("PartitionedProcess objects cannot be parallelized.")
        parameters["name"] = f"{parameters['process'].name}_requester"
        super().__init__(parameters)
[docs]
    def update_condition(self, timestep, states):
        """
        Implements variable timestepping for partitioned processes
        Vivarium cycles through all :py:class:~vivarium.core.process.Step`
        instances every time a :py:class:`~vivarium.core.process.Process`
        instance updates the simulation state. When that happens, Vivarium
        will only call the :py:meth:`~.Requester.next_update` method of this
        Requester if ``update_condition`` returns True.
        Each process has access to a process-specific ``next_update_time``
        store and the ``global_time`` store. If the next update time is
        less than or equal to the global time, the process runs. If the
        next update time is ever earlier than the global time, this usually
        indicates that the global clock process is running with too large
        a timestep, preventing accurate timekeeping.
        """
        if states["next_update_time"] <= states["global_time"]:
            if states["next_update_time"] < states["global_time"]:
                warnings.warn(
                    f"{self.name} updated at t="
                    f"{states['global_time']} instead of t="
                    f"{states['next_update_time']}. Decrease the "
                    "timestep of the global_clock process for more "
                    "accurate timekeeping."
                )
            return True
        return False 
[docs]
    def ports_schema(self):
        process = self.parameters.get("process")
        ports = process.get_schema()
        ports["request"] = {
            "bulk": {
                "_updater": "set",
                "_divider": "null",
                "_emit": False,
            }
        }
        ports["process"] = {
            "_default": tuple(),
            "_updater": "set",
            "_divider": "null",
            "_emit": False,
        }
        ports["global_time"] = {"_default": 0.0}
        ports["timestep"] = {"_default": process.parameters["timestep"]}
        ports["next_update_time"] = {
            "_default": process.parameters["timestep"],
            "_updater": "set",
            "_divider": "set",
        }
        self.cached_bulk_ports = list(ports["request"].keys())
        return ports 
[docs]
    def next_update(self, timestep, states):
        process = states["process"][0]
        request = process.calculate_request(states["timestep"], states)
        process.request_set = True
        request["request"] = {}
        # Send bulk requests through request port
        for bulk_port in self.cached_bulk_ports:
            bulk_request = request.pop(bulk_port, None)
            if bulk_request is not None:
                request["request"][bulk_port] = bulk_request
        # Ensure listeners are updated if present
        listeners = request.pop("listeners", None)
        if listeners is not None:
            request["listeners"] = listeners
        # Update shared process instance
        request["process"] = (process,)
        return request 
 
[docs]
class Evolver(Step):
    """Evolver Step
    Accepts a PartitionedProcess as an input, and runs in coordination with an
    Requester that uses the same PartitionedProcess.
    """
    defaults = {"process": None}
    def __init__(self, parameters=None):
        assert isinstance(parameters["process"], PartitionedProcess)
        parameters["name"] = f"{parameters['process'].name}_evolver"
        super().__init__(parameters)
[docs]
    def update_condition(self, timestep, states):
        """
        See :py:meth:`~.Requester.update_condition`.
        """
        if states["next_update_time"] <= states["global_time"]:
            if states["next_update_time"] < states["global_time"]:
                warnings.warn(
                    f"{self.name} updated at t="
                    f"{states['global_time']} instead of t="
                    f"{states['next_update_time']}. Decrease the "
                    "timestep for the global clock process for more "
                    "accurate timekeeping."
                )
            return True
        return False 
[docs]
    def ports_schema(self):
        process = self.parameters.get("process")
        ports = process.get_schema()
        ports["allocate"] = {
            "bulk": {
                "_updater": "set",
                "_divider": "null",
                "_emit": False,
            }
        }
        ports["process"] = {
            "_default": tuple(),
            "_updater": "set",
            "_divider": "null",
            "_emit": False,
        }
        ports["global_time"] = {"_default": 0.0}
        ports["timestep"] = {"_default": process.parameters["timestep"]}
        ports["next_update_time"] = {
            "_default": process.parameters["timestep"],
            "_updater": "set",
            "_divider": "set",
        }
        return ports 
[docs]
    def next_update(self, timestep, states):
        allocations = states.pop("allocate")
        states = deep_merge(states, allocations)
        process = states["process"][0]
        # If the Requester has not run yet, skip the Evolver's update to
        # let the Requester run in the next time step. This problem
        # often arises after division because after the step divider
        # runs, Vivarium wants to run the Evolvers instead of re-running
        # the Requesters. Skipping the Evolvers in this case means our
        # timesteps are slightly off. However, the alternative is to run
        # self.process.calculate_request and discard the result before
        # running the Evolver this timestep, which means we skip the
        # Allocator. Skipping the Allocator can cause the simulation to
        # crash, so having a slightly off timestep is preferable.
        if not process.request_set:
            return {}
        update = process.evolve_state(states["timestep"], states)
        update["process"] = (process,)
        update["next_update_time"] = states["global_time"] + states["timestep"]
        return update 
 
[docs]
class PartitionedProcess(Process):
    """Partitioned Process Base Class
    This is the base class for all processes whose updates can be partitioned.
    """
    def __init__(self, parameters=None):
        super().__init__(parameters)
        # set partition mode
        self.evolve_only = self.parameters.get("evolve_only", False)
        self.request_only = self.parameters.get("request_only", False)
        self.request_set = False
        # register topology
        assert self.name
        assert self.topology
        topology_registry.register(self.name, self.topology)
[docs]
    @abc.abstractmethod
    def ports_schema(self):
        return {} 
[docs]
    @abc.abstractmethod
    def calculate_request(self, timestep, states):
        return {} 
[docs]
    @abc.abstractmethod
    def evolve_state(self, timestep, states):
        return {} 
[docs]
    def next_update(self, timestep, states):
        if self.request_only:
            return self.calculate_request(timestep, states)
        if self.evolve_only:
            return self.evolve_state(timestep, states)
        requests = self.calculate_request(timestep, states)
        bulk_requests = requests.pop("bulk", [])
        if bulk_requests:
            bulk_copy = states["bulk"].copy()
            for bulk_idx, request in bulk_requests:
                bulk_copy[bulk_idx] = request
            states["bulk"] = bulk_copy
        states = deep_merge(states, requests)
        update = self.evolve_state(timestep, states)
        if "listeners" in requests:
            update["listeners"] = deep_merge(update["listeners"], requests["listeners"])
        return update