Source code for ecoli.processes.polypeptide_elongation

"""
======================
Polypeptide Elongation
======================

This process models the polymerization of amino acids into polypeptides
by ribosomes using an mRNA transcript as a template. Elongation terminates
once a ribosome has reached the end of an mRNA transcript. Polymerization
occurs across all ribosomes simultaneously and resources are allocated to
maximize the progress of all ribosomes within the limits of the maximum ribosome
elongation rate, available amino acids and GTP, and the length of the transcript.
"""

from typing import Any, Callable, Optional, Tuple

from numba import njit
import numpy as np
import numpy.typing as npt
from scipy.integrate import solve_ivp
from unum import Unum

# wcEcoli imports
from wholecell.utils.polymerize import buildSequences, polymerize, computeMassIncrease
from wholecell.utils.random import stochasticRound
from wholecell.utils import units

# vivarium imports
from vivarium.core.composition import simulate_process
from vivarium.library.dict_utils import deep_merge
from vivarium.library.units import units as vivunits
from vivarium.plots.simulation_output import plot_variables

# vivarium-ecoli imports
from ecoli.library.schema import (
    listener_schema,
    numpy_schema,
    counts,
    attrs,
    bulk_name_to_idx,
)
from ecoli.processes.registries import topology_registry
from ecoli.processes.partition import PartitionedProcess


MICROMOLAR_UNITS = units.umol / units.L
"""Units used for all concentrations."""
REMOVED_FROM_CHARGING = {"L-SELENOCYSTEINE[c]"}
"""Amino acids to remove from charging when running with 
``steady_state_trna_charging``"""


# Register default topology for this process, associating it with process name
NAME = "ecoli-polypeptide-elongation"
TOPOLOGY = {
    "environment": ("environment",),
    "boundary": ("boundary",),
    "listeners": ("listeners",),
    "active_ribosome": ("unique", "active_ribosome"),
    "bulk": ("bulk",),
    "polypeptide_elongation": ("process_state", "polypeptide_elongation"),
    # Non-partitioned counts
    "bulk_total": ("bulk",),
    "timestep": ("timestep",),
}
topology_registry.register(NAME, TOPOLOGY)

DEFAULT_AA_NAMES = [
    "L-ALPHA-ALANINE[c]",
    "ARG[c]",
    "ASN[c]",
    "L-ASPARTATE[c]",
    "CYS[c]",
    "GLT[c]",
    "GLN[c]",
    "GLY[c]",
    "HIS[c]",
    "ILE[c]",
    "LEU[c]",
    "LYS[c]",
    "MET[c]",
    "PHE[c]",
    "PRO[c]",
    "SER[c]",
    "THR[c]",
    "TRP[c]",
    "TYR[c]",
    "L-SELENOCYSTEINE[c]",
    "VAL[c]",
]


[docs] class PolypeptideElongation(PartitionedProcess): """Polypeptide Elongation PartitionedProcess defaults: proteinIds: array length n of protein names """ name = NAME topology = TOPOLOGY defaults = { "time_step": 1, "max_time_step": 2.0, "n_avogadro": 6.02214076e23 / units.mol, "proteinIds": np.array([]), "proteinLengths": np.array([]), "proteinSequences": np.array([[]]), "aaWeightsIncorporated": np.array([]), "endWeight": np.array([2.99146113e-08]), "variable_elongation": False, "make_elongation_rates": ( lambda random, rate, timestep, variable: np.array([]) ), "next_aa_pad": 1, "ribosomeElongationRate": 17.388824902723737, "translation_aa_supply": {"minimal": np.array([])}, "import_threshold": 1e-05, "aa_from_trna": np.zeros(21), "gtpPerElongation": 4.2, "aa_supply_in_charging": False, "adjust_timestep_for_charging": False, "mechanistic_translation_supply": False, "mechanistic_aa_transport": False, "ppgpp_regulation": False, "disable_ppgpp_elongation_inhibition": False, "trna_charging": False, "translation_supply": False, "mechanistic_supply": False, "ribosome30S": "ribosome30S", "ribosome50S": "ribosome50S", "amino_acids": DEFAULT_AA_NAMES, "aa_exchange_names": DEFAULT_AA_NAMES, "basal_elongation_rate": 22.0, "ribosomeElongationRateDict": { "minimal": 17.388824902723737 * units.aa / units.s }, "uncharged_trna_names": np.array([]), "aaNames": DEFAULT_AA_NAMES, "aa_enzymes": [], "proton": "PROTON", "water": "H2O", "cellDensity": 1100 * units.g / units.L, "elongation_max": 22 * units.aa / units.s, "aa_from_synthetase": np.array([[]]), "charging_stoich_matrix": np.array([[]]), "charged_trna_names": [], "charging_molecule_names": [], "synthetase_names": [], "ppgpp_reaction_names": [], "ppgpp_reaction_metabolites": [], "ppgpp_reaction_stoich": np.array([[]]), "ppgpp_synthesis_reaction": "GDPPYPHOSKIN-RXN", "ppgpp_degradation_reaction": "PPGPPSYN-RXN", "aa_importers": [], "amino_acid_export": None, "synthesis_index": 0, "aa_exporters": [], "get_pathway_enzyme_counts_per_aa": None, "import_constraint_threshold": 0, "unit_conversion": 0, "elong_rate_by_ppgpp": 0, "amino_acid_import": None, "degradation_index": 1, "amino_acid_synthesis": None, "rela": "RELA", "spot": "SPOT", "ppgpp": "ppGpp", "kS": 100.0, "KMtf": 1.0, "KMaa": 100.0, "krta": 1.0, "krtf": 500.0, "KD_RelA": 0.26, "k_RelA": 75.0, "k_SpoT_syn": 2.6, "k_SpoT_deg": 0.23, "KI_SpoT": 20.0, "aa_supply_scaling": lambda aa_conc, aa_in_media: 0, "seed": 0, "emit_unique": False, } def __init__(self, parameters=None): super().__init__(parameters) self.max_time_step = self.parameters["max_time_step"] # Simulation options self.aa_supply_in_charging = self.parameters["aa_supply_in_charging"] self.adjust_timestep_for_charging = self.parameters[ "adjust_timestep_for_charging" ] self.mechanistic_translation_supply = self.parameters[ "mechanistic_translation_supply" ] self.mechanistic_aa_transport = self.parameters["mechanistic_aa_transport"] self.ppgpp_regulation = self.parameters["ppgpp_regulation"] self.disable_ppgpp_elongation_inhibition = self.parameters[ "disable_ppgpp_elongation_inhibition" ] self.variable_elongation = self.parameters["variable_elongation"] self.variable_polymerize = self.ppgpp_regulation or self.variable_elongation translation_supply = self.parameters["translation_supply"] trna_charging = self.parameters["trna_charging"] # Load parameters self.n_avogadro = self.parameters["n_avogadro"] self.proteinIds = self.parameters["proteinIds"] self.protein_lengths = self.parameters["proteinLengths"] self.proteinSequences = self.parameters["proteinSequences"] self.aaWeightsIncorporated = self.parameters["aaWeightsIncorporated"] self.endWeight = self.parameters["endWeight"] self.make_elongation_rates = self.parameters["make_elongation_rates"] self.next_aa_pad = self.parameters["next_aa_pad"] self.ribosome30S = self.parameters["ribosome30S"] self.ribosome50S = self.parameters["ribosome50S"] self.amino_acids = self.parameters["amino_acids"] self.aa_exchange_names = self.parameters["aa_exchange_names"] self.aa_environment_names = [aa[:-3] for aa in self.aa_exchange_names] self.aa_enzymes = self.parameters["aa_enzymes"] self.ribosomeElongationRate = self.parameters["ribosomeElongationRate"] # Amino acid supply calculations self.translation_aa_supply = self.parameters["translation_aa_supply"] self.import_threshold = self.parameters["import_threshold"] # Used for figure in publication self.trpAIndex = np.where(self.proteinIds == "TRYPSYN-APROTEIN[c]")[0][0] self.elngRateFactor = 1.0 # Data structures for charging self.aa_from_trna = self.parameters["aa_from_trna"] # Set modeling method # TODO: Test that these models all work properly if trna_charging: self.elongation_model = SteadyStateElongationModel(self.parameters, self) elif translation_supply: self.elongation_model = TranslationSupplyElongationModel( self.parameters, self ) else: self.elongation_model = BaseElongationModel(self.parameters, self) # Growth associated maintenance energy requirements for elongations self.gtpPerElongation = self.parameters["gtpPerElongation"] # Need to account for ATP hydrolysis for charging that has been # removed from measured GAM (ATP -> AMP is 2 hydrolysis reactions) # if charging reactions are not explicitly modeled if not trna_charging: self.gtpPerElongation += 2 # basic molecule names self.proton = self.parameters["proton"] self.water = self.parameters["water"] self.rela = self.parameters["rela"] self.spot = self.parameters["spot"] self.ppgpp = self.parameters["ppgpp"] self.aa_importers = self.parameters["aa_importers"] self.aa_exporters = self.parameters["aa_exporters"] # Numpy index for bulk molecule self.proton_idx = None # Names of molecules associated with tRNA charging self.ppgpp_reaction_metabolites = self.parameters["ppgpp_reaction_metabolites"] self.uncharged_trna_names = self.parameters["uncharged_trna_names"] self.charged_trna_names = self.parameters["charged_trna_names"] self.charging_molecule_names = self.parameters["charging_molecule_names"] self.synthetase_names = self.parameters["synthetase_names"] self.seed = self.parameters["seed"] self.random_state = np.random.RandomState(seed=self.seed) self.zero_aa_exchange_rates = ( MICROMOLAR_UNITS / units.s * np.zeros(len(self.amino_acids)) )
[docs] def ports_schema(self): return { "environment": { "media_id": {"_default": "", "_updater": "set"}, "exchange": {"*": {"_default": 0}}, }, "boundary": { "external": { aa: {"_default": 0} for aa in sorted(self.aa_environment_names) } }, "listeners": { "mass": listener_schema({"cell_mass": 0.0, "dry_mass": 0.0}), "growth_limits": listener_schema( { "fraction_trna_charged": ( [0.0] * len(self.uncharged_trna_names), self.uncharged_trna_names, ), "aa_allocated": ([0] * len(self.amino_acids), self.amino_acids), "aa_pool_size": ([0] * len(self.amino_acids), self.amino_acids), "aa_request_size": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "active_ribosome_allocated": 0, "net_charged": ( [0] * len(self.uncharged_trna_names), self.uncharged_trna_names, ), "aas_used": ([0] * len(self.amino_acids), self.amino_acids), "aa_count_diff": ( [0.0] * len(self.amino_acids), self.amino_acids, ), # Below only if trna_charging enbaled "original_aa_supply": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "aa_in_media": ( [False] * len(self.amino_acids), self.amino_acids, ), "synthetase_conc": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "uncharged_trna_conc": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "charged_trna_conc": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "aa_conc": ([0.0] * len(self.amino_acids), self.amino_acids), "ribosome_conc": 0.0, "fraction_aa_to_elongate": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "aa_supply": ([0.0] * len(self.amino_acids), self.amino_acids), "aa_synthesis": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "aa_import": ([0.0] * len(self.amino_acids), self.amino_acids), "aa_export": ([0.0] * len(self.amino_acids), self.amino_acids), "aa_importers": ( [0] * len(self.aa_importers), self.aa_importers, ), "aa_exporters": ( [0] * len(self.aa_exporters), self.aa_exporters, ), "aa_supply_enzymes_fwd": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "aa_supply_enzymes_rev": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "aa_supply_aa_conc": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "aa_supply_fraction_fwd": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "aa_supply_fraction_rev": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "ppgpp_conc": 0.0, "rela_conc": 0.0, "spot_conc": 0.0, "rela_syn": ([0.0] * len(self.amino_acids), self.amino_acids), "spot_syn": 0.0, "spot_deg": 0.0, "spot_deg_inhibited": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "trna_charged": ([0] * len(self.amino_acids), self.amino_acids), } ), "ribosome_data": listener_schema( { "translation_supply": ( [0.0] * len(self.amino_acids), self.amino_acids, ), "effective_elongation_rate": 0.0, "aa_count_in_sequence": ( [0] * len(self.amino_acids), self.amino_acids, ), "aa_counts": ([0.0] * len(self.amino_acids), self.amino_acids), "actual_elongations": 0, "actual_elongation_hist": [0] * 22, "elongations_non_terminating_hist": [0] * 22, "did_terminate": 0, "termination_loss": 0, "num_trpA_terminated": 0, "process_elongation_rate": 0.0, } ), }, "bulk": numpy_schema("bulk"), "bulk_total": numpy_schema("bulk"), "active_ribosome": numpy_schema( "active_ribosome", emit=self.parameters["emit_unique"] ), "polypeptide_elongation": { "aa_count_diff": { "_default": {}, "_emit": True, "_updater": "set", "_divider": "empty_dict", }, "gtp_to_hydrolyze": { "_default": 0.0, "_emit": True, "_updater": "set", "_divider": "zero", }, "aa_exchange_rates": { "_default": [0.0], "_emit": True, "_updater": "set", "_divider": "zero", }, }, "timestep": {"_default": self.parameters["time_step"]}, }
[docs] def calculate_request(self, timestep, states): """ Set ribosome elongation rate based on simulation medium environment and elongation rate factor which is used to create single-cell variability in growth rate The maximum number of amino acids that can be elongated in a single timestep is set to 22 intentionally as the minimum number of padding values on the protein sequence matrix is set to 22. If timesteps longer than 1.0s are used, this feature will lead to errors in the effective ribosome elongation rate. """ if self.proton_idx is None: bulk_ids = states["bulk"]["id"] self.proton_idx = bulk_name_to_idx(self.proton, bulk_ids) self.water_idx = bulk_name_to_idx(self.water, bulk_ids) self.rela_idx = bulk_name_to_idx(self.rela, bulk_ids) self.spot_idx = bulk_name_to_idx(self.spot, bulk_ids) self.ppgpp_idx = bulk_name_to_idx(self.ppgpp, bulk_ids) self.monomer_idx = bulk_name_to_idx(self.proteinIds, bulk_ids) self.amino_acid_idx = bulk_name_to_idx(self.amino_acids, bulk_ids) self.aa_enzyme_idx = bulk_name_to_idx(self.aa_enzymes, bulk_ids) self.ppgpp_rxn_metabolites_idx = bulk_name_to_idx( self.ppgpp_reaction_metabolites, bulk_ids ) self.uncharged_trna_idx = bulk_name_to_idx( self.uncharged_trna_names, bulk_ids ) self.charged_trna_idx = bulk_name_to_idx(self.charged_trna_names, bulk_ids) self.charging_molecule_idx = bulk_name_to_idx( self.charging_molecule_names, bulk_ids ) self.synthetase_idx = bulk_name_to_idx(self.synthetase_names, bulk_ids) self.ribosome30S_idx = bulk_name_to_idx(self.ribosome30S, bulk_ids) self.ribosome50S_idx = bulk_name_to_idx(self.ribosome50S, bulk_ids) self.aa_importer_idx = bulk_name_to_idx(self.aa_importers, bulk_ids) self.aa_exporter_idx = bulk_name_to_idx(self.aa_exporters, bulk_ids) # MODEL SPECIFIC: get ribosome elongation rate self.ribosomeElongationRate = self.elongation_model.elongation_rate(states) # If there are no active ribosomes, return immediately if states["active_ribosome"]["_entryState"].sum() == 0: return {"listeners": {"ribosome_data": {}, "growth_limits": {}}} # Build sequences to request appropriate amount of amino acids to # polymerize for next timestep ( proteinIndexes, peptideLengths, ) = attrs(states["active_ribosome"], ["protein_index", "peptide_length"]) self.elongation_rates = self.make_elongation_rates( self.random_state, self.ribosomeElongationRate, states["timestep"], self.variable_elongation, ) sequences = buildSequences( self.proteinSequences, proteinIndexes, peptideLengths, self.elongation_rates ) sequenceHasAA = sequences != polymerize.PAD_VALUE aasInSequences = np.bincount(sequences[sequenceHasAA], minlength=21) # Calculate AA supply for expected doubling of protein dryMass = states["listeners"]["mass"]["dry_mass"] * units.fg current_media_id = states["environment"]["media_id"] translation_supply_rate = ( self.translation_aa_supply[current_media_id] * self.elngRateFactor ) mol_aas_supplied = ( translation_supply_rate * dryMass * states["timestep"] * units.s ) self.aa_supply = units.strip_empty_units(mol_aas_supplied * self.n_avogadro) # MODEL SPECIFIC: Calculate AA request fraction_charged, aa_counts_for_translation, requests = ( self.elongation_model.request(states, aasInSequences) ) # Write to listeners listeners = requests.setdefault("listeners", {}) ribosome_data_listener = listeners.setdefault("ribosome_data", {}) ribosome_data_listener["translation_supply"] = ( translation_supply_rate.asNumber() ) growth_limits_listener = requests["listeners"].setdefault("growth_limits", {}) growth_limits_listener["fraction_trna_charged"] = np.dot( fraction_charged, self.aa_from_trna ) growth_limits_listener["aa_pool_size"] = counts( states["bulk_total"], self.amino_acid_idx ) growth_limits_listener["aa_request_size"] = aa_counts_for_translation return requests
[docs] def evolve_state(self, timestep, states): """ Set ribosome elongation rate based on simulation medium environment and elongation rate factor which is used to create single-cell variability in growth rate The maximum number of amino acids that can be elongated in a single timestep is set to 22 intentionally as the minimum number of padding values on the protein sequence matrix is set to 22. If timesteps longer than 1.0s are used, this feature will lead to errors in the effective ribosome elongation rate. """ update = { "listeners": {"ribosome_data": {}, "growth_limits": {}}, "polypeptide_elongation": {}, "active_ribosome": {}, "bulk": [], } # Begin wcEcoli evolveState() # Set values for metabolism in case of early return update["polypeptide_elongation"]["gtp_to_hydrolyze"] = 0 update["polypeptide_elongation"]["aa_count_diff"] = {} # Get number of active ribosomes n_active_ribosomes = states["active_ribosome"]["_entryState"].sum() update["listeners"]["growth_limits"]["active_ribosome_allocated"] = ( n_active_ribosomes ) update["listeners"]["growth_limits"]["aa_allocated"] = counts( states["bulk"], self.amino_acid_idx ) # If there are no active ribosomes, return immediately if n_active_ribosomes == 0: return update # Polypeptide elongation requires counts to be updated in real-time # so make a writeable copy of bulk counts to do so states["bulk"] = counts(states["bulk"], range(len(states["bulk"]))) # Build amino acids sequences for each ribosome to polymerize protein_indexes, peptide_lengths, positions_on_mRNA = attrs( states["active_ribosome"], ["protein_index", "peptide_length", "pos_on_mRNA"], ) all_sequences = buildSequences( self.proteinSequences, protein_indexes, peptide_lengths, self.elongation_rates + self.next_aa_pad, ) sequences = all_sequences[:, : -self.next_aa_pad].copy() if sequences.size == 0: return update # Calculate elongation resource capacity aaCountInSequence = np.bincount(sequences[(sequences != polymerize.PAD_VALUE)]) total_aa_counts = counts(states["bulk"], self.amino_acid_idx) charged_trna_counts = counts(states["bulk"], self.charged_trna_idx) # MODEL SPECIFIC: Get amino acid counts aa_counts_for_translation = self.elongation_model.final_amino_acids( total_aa_counts, charged_trna_counts ) # Using polymerization algorithm elongate each ribosome up to the limits # of amino acids, sequence, and GTP result = polymerize( sequences, aa_counts_for_translation, 10000000, # Set to a large number, the limit is now taken care of in metabolism self.random_state, self.elongation_rates[protein_indexes], variable_elongation=self.variable_polymerize, ) sequence_elongations = result.sequenceElongation aas_used = result.monomerUsages nElongations = result.nReactions next_amino_acid = all_sequences[ np.arange(len(sequence_elongations)), sequence_elongations ] next_amino_acid_count = np.bincount( next_amino_acid[next_amino_acid != polymerize.PAD_VALUE], minlength=21 ) # Update masses of ribosomes attached to polymerizing polypeptides added_protein_mass = computeMassIncrease( sequences, sequence_elongations, self.aaWeightsIncorporated ) updated_lengths = peptide_lengths + sequence_elongations updated_positions_on_mRNA = positions_on_mRNA + 3 * sequence_elongations didInitialize = (sequence_elongations > 0) & (peptide_lengths == 0) added_protein_mass[didInitialize] += self.endWeight # Write current average elongation to listener currElongRate = (sequence_elongations.sum() / n_active_ribosomes) / states[ "timestep" ] # Ribosomes that reach the end of their sequences are terminated and # dissociated into 30S and 50S subunits. The polypeptide that they are # polymerizing is converted into a protein in BulkMolecules terminalLengths = self.protein_lengths[protein_indexes] didTerminate = updated_lengths == terminalLengths terminatedProteins = np.bincount( protein_indexes[didTerminate], minlength=self.proteinSequences.shape[0] ) (protein_mass,) = attrs(states["active_ribosome"], ["massDiff_protein"]) update["active_ribosome"].update( { "delete": np.where(didTerminate)[0], "set": { "massDiff_protein": protein_mass + added_protein_mass, "peptide_length": updated_lengths, "pos_on_mRNA": updated_positions_on_mRNA, }, } ) update["bulk"].append((self.monomer_idx, terminatedProteins)) states["bulk"][self.monomer_idx] += terminatedProteins nTerminated = didTerminate.sum() nInitialized = didInitialize.sum() update["bulk"].append((self.ribosome30S_idx, nTerminated)) update["bulk"].append((self.ribosome50S_idx, nTerminated)) states["bulk"][self.ribosome30S_idx] += nTerminated states["bulk"][self.ribosome50S_idx] += nTerminated # MODEL SPECIFIC: evolve net_charged, aa_count_diff, evolve_update = self.elongation_model.evolve( states, total_aa_counts, aas_used, next_amino_acid_count, nElongations, nInitialized, ) evolve_bulk_update = evolve_update.pop("bulk") update = deep_merge(update, evolve_update) update["bulk"].extend(evolve_bulk_update) update["polypeptide_elongation"]["aa_count_diff"] = aa_count_diff # GTP hydrolysis is carried out in Metabolism process for growth # associated maintenance. This is passed to metabolism. update["polypeptide_elongation"]["gtp_to_hydrolyze"] = ( self.gtpPerElongation * nElongations ) # Write data to listeners update["listeners"]["growth_limits"]["net_charged"] = net_charged update["listeners"]["growth_limits"]["aas_used"] = aas_used update["listeners"]["growth_limits"]["aa_count_diff"] = [ aa_count_diff.get(id_, 0) for id_ in self.amino_acids ] ribosome_data_listener = update["listeners"].setdefault("ribosome_data", {}) ribosome_data_listener["effective_elongation_rate"] = currElongRate ribosome_data_listener["aa_count_in_sequence"] = aaCountInSequence ribosome_data_listener["aa_counts"] = aa_counts_for_translation ribosome_data_listener["actual_elongations"] = sequence_elongations.sum() ribosome_data_listener["actual_elongation_hist"] = np.histogram( sequence_elongations, bins=np.arange(0, 23) )[0] ribosome_data_listener["elongations_non_terminating_hist"] = np.histogram( sequence_elongations[~didTerminate], bins=np.arange(0, 23) )[0] ribosome_data_listener["did_terminate"] = didTerminate.sum() ribosome_data_listener["termination_loss"] = ( terminalLengths - peptide_lengths )[didTerminate].sum() ribosome_data_listener["num_trpA_terminated"] = terminatedProteins[ self.trpAIndex ] ribosome_data_listener["process_elongation_rate"] = ( self.ribosomeElongationRate / states["timestep"] ) return update
[docs] def isTimeStepShortEnough(self, inputTimeStep, timeStepSafetyFraction): model_specific = self.elongation_model.isTimeStepShortEnough( inputTimeStep, timeStepSafetyFraction ) max_time_step = inputTimeStep <= self.max_time_step return model_specific and max_time_step
[docs] class BaseElongationModel(object): """ Base Model: Request amino acids according to upcoming sequence, assuming max ribosome elongation. """ def __init__(self, parameters, process): self.parameters = parameters self.process = process self.basal_elongation_rate = self.parameters["basal_elongation_rate"] self.ribosomeElongationRateDict = self.parameters["ribosomeElongationRateDict"]
[docs] def elongation_rate(self, states): """ Sets ribosome elongation rate accordint to the media; returns max value of 22 amino acids/second. """ current_media_id = states["environment"]["media_id"] rate = self.process.elngRateFactor * self.ribosomeElongationRateDict[ current_media_id ].asNumber(units.aa / units.s) return np.min([self.basal_elongation_rate, rate])
[docs] def amino_acid_counts(self, aasInSequences): return aasInSequences
[docs] def request(self, states, aasInSequences): aa_counts_for_translation = self.amino_acid_counts(aasInSequences) requests = {"bulk": [(self.process.amino_acid_idx, aa_counts_for_translation)]} # Not modeling charging so set fraction charged to 0 for all tRNA fraction_charged = np.zeros(len(self.process.amino_acid_idx)) return fraction_charged, aa_counts_for_translation, requests
[docs] def final_amino_acids(self, total_aa_counts, charged_trna_counts): return total_aa_counts
[docs] def evolve( self, states, total_aa_counts, aas_used, next_amino_acid_count, nElongations, nInitialized, ): # Update counts of amino acids and water to reflect polymerization # reactions net_charged = np.zeros(len(self.parameters["uncharged_trna_names"])) return ( net_charged, {}, { "bulk": [ (self.process.amino_acid_idx, -aas_used), (self.process.water_idx, nElongations - nInitialized), ] }, )
[docs] def isTimeStepShortEnough(self, inputTimeStep, timeStepSafetyFraction): return True
[docs] class TranslationSupplyElongationModel(BaseElongationModel): """ Translation Supply Model: Requests minimum of 1) upcoming amino acid sequence assuming max ribosome elongation (ie. Base Model) and 2) estimation based on doubling the proteome in one cell cycle (does not use ribosome elongation, computed in Parca). """ def __init__(self, parameters, process): super().__init__(parameters, process)
[docs] def elongation_rate(self, states): """ Sets ribosome elongation rate accordint to the media; returns max value of 22 amino acids/second. """ return self.basal_elongation_rate
[docs] def amino_acid_counts(self, aasInSequences): # Check if this is required. It is a better request but there may be # fewer elongations. return np.fmin(self.process.aa_supply, aasInSequences)
[docs] class SteadyStateElongationModel(TranslationSupplyElongationModel): """ Steady State Charging Model: Requests amino acids based on the Michaelis-Menten competitive inhibition model. """ def __init__(self, parameters, process): super().__init__(parameters, process) # Cell parameters self.cellDensity = self.parameters["cellDensity"] # Names of molecules associated with tRNA charging self.charged_trna_names = self.parameters["charged_trna_names"] self.charging_molecule_names = self.parameters["charging_molecule_names"] self.synthetase_names = self.parameters["synthetase_names"] # Data structures for charging self.aa_from_synthetase = self.parameters["aa_from_synthetase"] self.charging_stoich_matrix = self.parameters["charging_stoich_matrix"] self.charging_molecules_not_aa = np.array( [ mol not in set(self.parameters["amino_acids"]) for mol in self.charging_molecule_names ] ) # ppGpp synthesis self.ppgpp_reaction_metabolites = self.parameters["ppgpp_reaction_metabolites"] self.elong_rate_by_ppgpp = self.parameters["elong_rate_by_ppgpp"] # Parameters for tRNA charging, ribosome elongation and ppGpp reactions self.charging_params = { "kS": self.parameters["kS"], "KMaa": self.parameters["KMaa"], "KMtf": self.parameters["KMtf"], "krta": self.parameters["krta"], "krtf": self.parameters["krtf"], "max_elong_rate": float( self.parameters["elongation_max"].asNumber(units.aa / units.s) ), "charging_mask": np.array( [ aa not in REMOVED_FROM_CHARGING for aa in self.parameters["amino_acids"] ] ), "unit_conversion": self.parameters["unit_conversion"], } self.ppgpp_params = { "KD_RelA": self.parameters["KD_RelA"], "k_RelA": self.parameters["k_RelA"], "k_SpoT_syn": self.parameters["k_SpoT_syn"], "k_SpoT_deg": self.parameters["k_SpoT_deg"], "KI_SpoT": self.parameters["KI_SpoT"], "ppgpp_reaction_stoich": self.parameters["ppgpp_reaction_stoich"], "synthesis_index": self.parameters["synthesis_index"], "degradation_index": self.parameters["degradation_index"], } # Amino acid supply calculations self.aa_supply_scaling = self.parameters["aa_supply_scaling"] # Manage unstable charging with too long time step by setting # time_step_short_enough to False during updates. Other variables # manage when to trigger an adjustment and how quickly the time step # increases after being reduced self.time_step_short_enough = True self.max_time_step = self.process.max_time_step self.time_step_increase = 1.01 self.max_amino_acid_adjustment = 0.05 self.amino_acid_synthesis = self.parameters["amino_acid_synthesis"] self.amino_acid_import = self.parameters["amino_acid_import"] self.amino_acid_export = self.parameters["amino_acid_export"] self.get_pathway_enzyme_counts_per_aa = self.parameters[ "get_pathway_enzyme_counts_per_aa" ] # Comparing two values with units is faster than converting units # and comparing magnitudes self.import_constraint_threshold = ( self.parameters["import_constraint_threshold"] * vivunits.mM )
[docs] def elongation_rate(self, states): if ( self.process.ppgpp_regulation and not self.process.disable_ppgpp_elongation_inhibition ): cell_mass = states["listeners"]["mass"]["cell_mass"] * units.fg cell_volume = cell_mass / self.cellDensity counts_to_molar = 1 / (self.process.n_avogadro * cell_volume) ppgpp_count = counts(states["bulk"], self.process.ppgpp_idx) ppgpp_conc = ppgpp_count * counts_to_molar rate = self.elong_rate_by_ppgpp( ppgpp_conc, self.basal_elongation_rate ).asNumber(units.aa / units.s) else: rate = super().elongation_rate(states) return rate
[docs] def request(self, states, aasInSequences): self.max_time_step = min( self.process.max_time_step, self.max_time_step * self.time_step_increase ) # Conversion from counts to molarity cell_mass = states["listeners"]["mass"]["cell_mass"] * units.fg dry_mass = states["listeners"]["mass"]["dry_mass"] * units.fg cell_volume = cell_mass / self.cellDensity self.counts_to_molar = 1 / (self.process.n_avogadro * cell_volume) # ppGpp related concentrations ppgpp_conc = self.counts_to_molar * counts( states["bulk_total"], self.process.ppgpp_idx ) rela_conc = self.counts_to_molar * counts( states["bulk_total"], self.process.rela_idx ) spot_conc = self.counts_to_molar * counts( states["bulk_total"], self.process.spot_idx ) # Get counts and convert synthetase and tRNA to a per AA basis synthetase_counts = np.dot( self.aa_from_synthetase, counts(states["bulk_total"], self.process.synthetase_idx), ) aa_counts = counts(states["bulk_total"], self.process.amino_acid_idx) uncharged_trna_array = counts( states["bulk_total"], self.process.uncharged_trna_idx ) charged_trna_array = counts(states["bulk_total"], self.process.charged_trna_idx) uncharged_trna_counts = np.dot(self.process.aa_from_trna, uncharged_trna_array) charged_trna_counts = np.dot(self.process.aa_from_trna, charged_trna_array) ribosome_counts = states["active_ribosome"]["_entryState"].sum() # Get concentration f = aasInSequences / aasInSequences.sum() synthetase_conc = self.counts_to_molar * synthetase_counts aa_conc = self.counts_to_molar * aa_counts uncharged_trna_conc = self.counts_to_molar * uncharged_trna_counts charged_trna_conc = self.counts_to_molar * charged_trna_counts ribosome_conc = self.counts_to_molar * ribosome_counts # Calculate amino acid supply aa_in_media = np.array( [ states["boundary"]["external"][aa] > self.import_constraint_threshold for aa in self.process.aa_environment_names ] ) fwd_enzyme_counts, rev_enzyme_counts = self.get_pathway_enzyme_counts_per_aa( counts(states["bulk_total"], self.process.aa_enzyme_idx) ) importer_counts = counts(states["bulk_total"], self.process.aa_importer_idx) exporter_counts = counts(states["bulk_total"], self.process.aa_exporter_idx) synthesis, fwd_saturation, rev_saturation = self.amino_acid_synthesis( fwd_enzyme_counts, rev_enzyme_counts, aa_conc ) import_rates = self.amino_acid_import( aa_in_media, dry_mass, aa_conc, importer_counts, self.process.mechanistic_aa_transport, ) export_rates = self.amino_acid_export( exporter_counts, aa_conc, self.process.mechanistic_aa_transport ) exchange_rates = import_rates - export_rates supply_function = get_charging_supply_function( self.process.aa_supply_in_charging, self.process.mechanistic_translation_supply, self.process.mechanistic_aa_transport, self.amino_acid_synthesis, self.amino_acid_import, self.amino_acid_export, self.aa_supply_scaling, self.counts_to_molar, self.process.aa_supply, fwd_enzyme_counts, rev_enzyme_counts, dry_mass, importer_counts, exporter_counts, aa_in_media, ) # Calculate steady state tRNA levels and resulting elongation rate self.charging_params["max_elong_rate"] = self.elongation_rate(states) ( fraction_charged, v_rib, synthesis_in_charging, import_in_charging, export_in_charging, ) = calculate_trna_charging( synthetase_conc, uncharged_trna_conc, charged_trna_conc, aa_conc, ribosome_conc, f, self.charging_params, supply=supply_function, limit_v_rib=True, time_limit=states["timestep"], ) # Use the supply calculated from each sub timestep while solving the charging steady state if self.process.aa_supply_in_charging: conversion = ( 1 / self.counts_to_molar.asNumber(MICROMOLAR_UNITS) / states["timestep"] ) synthesis = conversion * synthesis_in_charging import_rates = conversion * import_in_charging export_rates = conversion * export_in_charging self.process.aa_supply = synthesis + import_rates - export_rates # Use the supply calculated from the starting amino acid concentrations only elif self.process.mechanistic_translation_supply: # Set supply based on mechanistic synthesis and supply self.process.aa_supply = states["timestep"] * (synthesis + exchange_rates) else: # Adjust aa_supply higher if amino acid concentrations are low # Improves stability of charging and mimics amino acid synthesis # inhibition and export self.process.aa_supply *= self.aa_supply_scaling(aa_conc, aa_in_media) aa_counts_for_translation = ( v_rib * f * states["timestep"] / self.counts_to_molar.asNumber(MICROMOLAR_UNITS) ) total_trna = charged_trna_array + uncharged_trna_array final_charged_trna = stochasticRound( self.process.random_state, np.dot(fraction_charged, self.process.aa_from_trna * total_trna), ) # Request charged tRNA that will become uncharged charged_trna_request = charged_trna_array - final_charged_trna charged_trna_request[charged_trna_request < 0] = 0 uncharged_trna_request = final_charged_trna - charged_trna_array uncharged_trna_request[uncharged_trna_request < 0] = 0 self.uncharged_trna_to_charge = uncharged_trna_request self.aa_counts_for_translation = np.array(aa_counts_for_translation) fraction_trna_per_aa = total_trna / np.dot( np.dot(self.process.aa_from_trna, total_trna), self.process.aa_from_trna ) total_charging_reactions = stochasticRound( self.process.random_state, np.dot(aa_counts_for_translation, self.process.aa_from_trna) * fraction_trna_per_aa + uncharged_trna_request, ) # Only request molecules that will be consumed in the charging reactions aa_from_uncharging = -self.charging_stoich_matrix @ charged_trna_request aa_from_uncharging[self.charging_molecules_not_aa] = 0 requested_molecules = ( -np.dot(self.charging_stoich_matrix, total_charging_reactions) - aa_from_uncharging ) requested_molecules[requested_molecules < 0] = 0 self.uncharged_trna_to_charge = uncharged_trna_request # ppGpp reactions based on charged tRNA request_ppgpp_metabolites = np.zeros( len(self.process.ppgpp_reaction_metabolites) ) bulk_request = [ ( self.process.charging_molecule_idx, requested_molecules.astype(int), ), (self.process.charged_trna_idx, charged_trna_request.astype(int)), # Request water for transfer of AA from tRNA for initial polypeptide. # This is severe overestimate assuming the worst case that every # elongation is initializing a polypeptide. This excess of water # shouldn't matter though. (self.process.water_idx, int(aa_counts_for_translation.sum())), ] if self.process.ppgpp_regulation: total_trna_conc = self.counts_to_molar * ( uncharged_trna_counts + charged_trna_counts ) updated_charged_trna_conc = total_trna_conc * fraction_charged updated_uncharged_trna_conc = total_trna_conc - updated_charged_trna_conc delta_metabolites, *_ = ppgpp_metabolite_changes( updated_uncharged_trna_conc, updated_charged_trna_conc, ribosome_conc, f, rela_conc, spot_conc, ppgpp_conc, self.counts_to_molar, v_rib, self.charging_params, self.ppgpp_params, states["timestep"], request=True, random_state=self.process.random_state, ) request_ppgpp_metabolites = -delta_metabolites ppgpp_request = counts(states["bulk"], self.process.ppgpp_idx) bulk_request.append((self.process.ppgpp_idx, ppgpp_request)) bulk_request.append( ( self.process.ppgpp_rxn_metabolites_idx, request_ppgpp_metabolites.astype(int), ) ) return ( fraction_charged, aa_counts_for_translation, { "bulk": bulk_request, "listeners": { "growth_limits": { "original_aa_supply": self.process.aa_supply, "aa_in_media": aa_in_media, "synthetase_conc": synthetase_conc.asNumber(MICROMOLAR_UNITS), "uncharged_trna_conc": uncharged_trna_conc.asNumber( MICROMOLAR_UNITS ), "charged_trna_conc": charged_trna_conc.asNumber( MICROMOLAR_UNITS ), "aa_conc": aa_conc.asNumber(MICROMOLAR_UNITS), "ribosome_conc": ribosome_conc.asNumber(MICROMOLAR_UNITS), "fraction_aa_to_elongate": f, "aa_supply": self.process.aa_supply, "aa_synthesis": synthesis * states["timestep"], "aa_import": import_rates * states["timestep"], "aa_export": export_rates * states["timestep"], "aa_supply_enzymes_fwd": fwd_enzyme_counts, "aa_supply_enzymes_rev": rev_enzyme_counts, "aa_importers": importer_counts, "aa_exporters": exporter_counts, "aa_supply_aa_conc": aa_conc.asNumber(units.mmol / units.L), "aa_supply_fraction_fwd": fwd_saturation, "aa_supply_fraction_rev": rev_saturation, "ppgpp_conc": ppgpp_conc.asNumber(MICROMOLAR_UNITS), "rela_conc": rela_conc.asNumber(MICROMOLAR_UNITS), "spot_conc": spot_conc.asNumber(MICROMOLAR_UNITS), } }, "polypeptide_elongation": { "aa_exchange_rates": self.counts_to_molar / units.s * (import_rates - export_rates) }, }, )
[docs] def final_amino_acids(self, total_aa_counts, charged_trna_counts): charged_counts_to_uncharge = self.process.aa_from_trna @ charged_trna_counts return np.fmin( total_aa_counts + charged_counts_to_uncharge, self.aa_counts_for_translation )
[docs] def evolve( self, states, total_aa_counts, aas_used, next_amino_acid_count, nElongations, nInitialized, ): update = { "bulk": [], "listeners": {"growth_limits": {}}, } # Get tRNA counts uncharged_trna = counts(states["bulk"], self.process.uncharged_trna_idx) charged_trna = counts(states["bulk"], self.process.charged_trna_idx) total_trna = uncharged_trna + charged_trna # Adjust molecules for number of charging reactions that occurred ## Determine limitations for charging and uncharging reactions charged_and_elongated_per_aa = np.fmax( 0, (aas_used - self.process.aa_from_trna @ charged_trna) ) aa_for_charging = total_aa_counts - charged_and_elongated_per_aa n_aa_charged = np.fmin( aa_for_charging, np.dot( self.process.aa_from_trna, np.fmin(self.uncharged_trna_to_charge, uncharged_trna), ), ) n_uncharged_per_aa = aas_used - charged_and_elongated_per_aa ## Calculate changes in tRNA based on limitations n_trna_charged = self.distribution_from_aa(n_aa_charged, uncharged_trna, True) n_trna_uncharged = self.distribution_from_aa( n_uncharged_per_aa, charged_trna, True ) ## Determine reactions that are charged and elongated in same time step without changing ## charged or uncharged counts charged_and_elongated = self.distribution_from_aa( charged_and_elongated_per_aa, total_trna ) ## Determine total number of reactions that occur total_uncharging_reactions = charged_and_elongated + n_trna_uncharged total_charging_reactions = charged_and_elongated + n_trna_charged net_charged = total_charging_reactions - total_uncharging_reactions charging_mol_delta = np.dot( self.charging_stoich_matrix, total_charging_reactions ).astype(int) update["bulk"].append((self.process.charging_molecule_idx, charging_mol_delta)) states["bulk"][self.process.charging_molecule_idx] += charging_mol_delta ## Account for uncharging of tRNA during elongation update["bulk"].append( (self.process.charged_trna_idx, -total_uncharging_reactions) ) update["bulk"].append( (self.process.uncharged_trna_idx, total_uncharging_reactions) ) states["bulk"][self.process.charged_trna_idx] += -total_uncharging_reactions states["bulk"][self.process.uncharged_trna_idx] += total_uncharging_reactions # Update proton counts to reflect polymerization reactions and transfer of AA from tRNA # Peptide bond formation releases a water but transferring AA from tRNA consumes a OH- # Net production of H+ for each elongation, consume extra water for each initialization # since a peptide bond doesn't form update["bulk"].append((self.process.proton_idx, nElongations)) update["bulk"].append((self.process.water_idx, -nInitialized)) states["bulk"][self.process.proton_idx] += nElongations states["bulk"][self.process.water_idx] += -nInitialized # Create or degrade ppGpp # This should come after all countInc/countDec calls since it shares some molecules with # other views and those counts should be updated to get the proper limits on ppGpp reactions if self.process.ppgpp_regulation: v_rib = (nElongations * self.counts_to_molar).asNumber( MICROMOLAR_UNITS ) / states["timestep"] ribosome_conc = ( self.counts_to_molar * states["active_ribosome"]["_entryState"].sum() ) updated_uncharged_trna_counts = ( counts(states["bulk_total"], self.process.uncharged_trna_idx) - net_charged ) updated_charged_trna_counts = ( counts(states["bulk_total"], self.process.charged_trna_idx) + net_charged ) uncharged_trna_conc = self.counts_to_molar * np.dot( self.process.aa_from_trna, updated_uncharged_trna_counts ) charged_trna_conc = self.counts_to_molar * np.dot( self.process.aa_from_trna, updated_charged_trna_counts ) ppgpp_conc = self.counts_to_molar * counts( states["bulk_total"], self.process.ppgpp_idx ) rela_conc = self.counts_to_molar * counts( states["bulk_total"], self.process.rela_idx ) spot_conc = self.counts_to_molar * counts( states["bulk_total"], self.process.spot_idx ) # Need to include the next amino acid the ribosome sees for certain # cases where elongation does not occur, otherwise f will be NaN aa_at_ribosome = aas_used + next_amino_acid_count f = aa_at_ribosome / aa_at_ribosome.sum() limits = counts(states["bulk"], self.process.ppgpp_rxn_metabolites_idx) ( delta_metabolites, ppgpp_syn, ppgpp_deg, rela_syn, spot_syn, spot_deg, spot_deg_inhibited, ) = ppgpp_metabolite_changes( uncharged_trna_conc, charged_trna_conc, ribosome_conc, f, rela_conc, spot_conc, ppgpp_conc, self.counts_to_molar, v_rib, self.charging_params, self.ppgpp_params, states["timestep"], random_state=self.process.random_state, limits=limits, ) update["listeners"]["growth_limits"] = { "rela_syn": rela_syn, "spot_syn": spot_syn, "spot_deg": spot_deg, "spot_deg_inhibited": spot_deg_inhibited, } update["bulk"].append( (self.process.ppgpp_rxn_metabolites_idx, delta_metabolites.astype(int)) ) states["bulk"][self.process.ppgpp_rxn_metabolites_idx] += ( delta_metabolites.astype(int) ) # Use the difference between (expected AA supply based on expected # doubling time and current DCW) and AA used to charge tRNA to update # the concentration target in metabolism during the next time step aa_used_trna = np.dot(self.process.aa_from_trna, total_charging_reactions) aa_diff = self.process.aa_supply - aa_used_trna if np.any( np.abs(aa_diff / counts(states["bulk_total"], self.process.amino_acid_idx)) > self.max_amino_acid_adjustment ): self.time_step_short_enough = False update["listeners"]["growth_limits"]["trna_charged"] = aa_used_trna.astype(int) return ( net_charged, {aa: diff for aa, diff in zip(self.process.amino_acids, aa_diff)}, update, )
[docs] def distribution_from_aa( self, n_aa: npt.NDArray[np.int64], n_trna: npt.NDArray[np.int64], limited: bool = False, ) -> npt.NDArray[np.int64]: """ Distributes counts of amino acids to tRNAs that are associated with each amino acid. Uses self.process.aa_from_trna mapping to distribute from amino acids to tRNA based on the fraction that each tRNA species makes up for all tRNA species that code for the same amino acid. Args: n_aa: counts of each amino acid to distribute to each tRNA n_trna: counts of each tRNA to determine the distribution limited: optional, if True, limits the amino acids distributed to each tRNA to the number of tRNA that are available (n_trna) Returns: Distributed counts for each tRNA """ # Determine the fraction each tRNA species makes up out of all tRNA of # the associated amino acid with np.errstate(invalid="ignore"): f_trna = n_trna / np.dot( np.dot(self.process.aa_from_trna, n_trna), self.process.aa_from_trna ) f_trna[~np.isfinite(f_trna)] = 0 trna_counts = np.zeros(f_trna.shape, np.int64) for count, row in zip(n_aa, self.process.aa_from_trna): idx = row == 1 frac = f_trna[idx] counts = np.floor(frac * count) diff = int(count - counts.sum()) # Add additional counts to get up to counts to distribute # Prevent adding over the number of tRNA available if limited if diff > 0: if limited: for _ in range(diff): frac[(n_trna[idx] - counts) == 0] = 0 # normalize for multinomial distribution frac /= frac.sum() adjustment = self.process.random_state.multinomial(1, frac) counts += adjustment else: adjustment = self.process.random_state.multinomial(diff, frac) counts += adjustment trna_counts[idx] = counts return trna_counts
[docs] def isTimeStepShortEnough(self, inputTimeStep, timeStepSafetyFraction): short_enough = True # Needs to be less than the max time step to prevent oscillatory # behavior if inputTimeStep > self.max_time_step: short_enough = False # Decrease the max time step to get more stable charging if (not self.time_step_short_enough) and ( self.process.adjust_timestep_for_charging ): self.max_time_step = inputTimeStep / 2 self.time_step_short_enough = True short_enough = False return short_enough
[docs] def ppgpp_metabolite_changes( uncharged_trna_conc: Unum, charged_trna_conc: Unum, ribosome_conc: Unum, f: npt.NDArray[np.float64], rela_conc: Unum, spot_conc: Unum, ppgpp_conc: Unum, counts_to_molar: Unum, v_rib: Unum, charging_params: dict[str, Any], ppgpp_params: dict[str, Any], time_step: float, request: bool = False, limits: Optional[npt.NDArray[np.float64]] = None, random_state: Optional[np.random.RandomState] = None, ) -> tuple[npt.NDArray[np.int64], int, int, Unum, Unum, Unum, Unum]: """ Calculates the changes in metabolite counts based on ppGpp synthesis and degradation reactions. Args: uncharged_trna_conc: concentration (:py:data:`~ecoli.processes.polypeptide_elongation.MICROMOLAR_UNITS`) of uncharged tRNA associated with each amino acid charged_trna_conc: concentration (:py:data:`~ecoli.processes.polypeptide_elongation.MICROMOLAR_UNITS`) of charged tRNA associated with each amino acid ribosome_conc: concentration (:py:data:`~ecoli.processes.polypeptide_elongation.MICROMOLAR_UNITS`) of active ribosomes f: fraction of each amino acid to be incorporated to total amino acids incorporated rela_conc: concentration (:py:data:`~ecoli.processes.polypeptide_elongation.MICROMOLAR_UNITS`) of RelA spot_conc: concentration (:py:data:`~ecoli.processes.polypeptide_elongation.MICROMOLAR_UNITS`) of SpoT ppgpp_conc: concentration (:py:data:`~ecoli.processes.polypeptide_elongation.MICROMOLAR_UNITS`) of ppGpp counts_to_molar: conversion factor from counts to molarity (:py:data:`~ecoli.processes.polypeptide_elongation.MICROMOLAR_UNITS`) v_rib: rate of amino acid incorporation at the ribosome (units of uM/s) charging_params: parameters used in charging equations ppgpp_params: parameters used in ppGpp reactions time_step: length of the current time step request: if True, only considers reactant stoichiometry, otherwise considers reactants and products. For use in calculateRequest. GDP appears as both a reactant and product and the request can be off the actual use if not handled in this manner. limits: counts of molecules that are available to prevent negative total counts as a result of delta_metabolites. If None, no limits are placed on molecule changes. random_state: random state for the process Returns: 7-element tuple containing - **delta_metabolites**: the change in counts of each metabolite involved in ppGpp reactions - **n_syn_reactions**: the number of ppGpp synthesis reactions - **n_deg_reactions**: the number of ppGpp degradation reactions - **v_rela_syn**: rate of synthesis from RelA per amino acid tRNA species - **v_spot_syn**: rate of synthesis from SpoT - **v_deg**: rate of degradation from SpoT - **v_deg_inhibited**: rate of degradation from SpoT per amino acid tRNA species """ if random_state is None: random_state = np.random.RandomState() uncharged_trna_conc = uncharged_trna_conc.asNumber(MICROMOLAR_UNITS) charged_trna_conc = charged_trna_conc.asNumber(MICROMOLAR_UNITS) ribosome_conc = ribosome_conc.asNumber(MICROMOLAR_UNITS) rela_conc = rela_conc.asNumber(MICROMOLAR_UNITS) spot_conc = spot_conc.asNumber(MICROMOLAR_UNITS) ppgpp_conc = ppgpp_conc.asNumber(MICROMOLAR_UNITS) counts_to_micromolar = counts_to_molar.asNumber(MICROMOLAR_UNITS) numerator = ( 1 + charged_trna_conc / charging_params["krta"] + uncharged_trna_conc / charging_params["krtf"] ) saturated_charged = charged_trna_conc / charging_params["krta"] / numerator saturated_uncharged = uncharged_trna_conc / charging_params["krtf"] / numerator if v_rib == 0: ribosome_conc_a_site = f * ribosome_conc else: ribosome_conc_a_site = ( f * v_rib / (saturated_charged * charging_params["max_elong_rate"]) ) ribosomes_bound_to_uncharged = ribosome_conc_a_site * saturated_uncharged # Handle rare cases when tRNA concentrations are 0 # Can result in inf and nan so assume a fraction of ribosomes # bind to the uncharged tRNA if any tRNA are present or 0 if not mask = ~np.isfinite(ribosomes_bound_to_uncharged) ribosomes_bound_to_uncharged[mask] = ( ribosome_conc * f[mask] * np.array(uncharged_trna_conc[mask] + charged_trna_conc[mask] > 0) ) # Calculate active fraction of RelA competitive_inhibition = 1 + ribosomes_bound_to_uncharged / ppgpp_params["KD_RelA"] inhibition_product = np.prod(competitive_inhibition) with np.errstate(divide="ignore"): frac_rela = 1 / ( ppgpp_params["KD_RelA"] / ribosomes_bound_to_uncharged * inhibition_product / competitive_inhibition + 1 ) # Calculate rates for synthesis and degradation v_rela_syn = ppgpp_params["k_RelA"] * rela_conc * frac_rela v_spot_syn = ppgpp_params["k_SpoT_syn"] * spot_conc v_syn = v_rela_syn.sum() + v_spot_syn max_deg = ppgpp_params["k_SpoT_deg"] * spot_conc * ppgpp_conc fractions = uncharged_trna_conc / ppgpp_params["KI_SpoT"] v_deg = max_deg / (1 + fractions.sum()) v_deg_inhibited = (max_deg - v_deg) * fractions / fractions.sum() # Convert to discrete reactions n_syn_reactions = stochasticRound( random_state, v_syn * time_step / counts_to_micromolar )[0] n_deg_reactions = stochasticRound( random_state, v_deg * time_step / counts_to_micromolar )[0] # Only look at reactant stoichiometry if requesting molecules to use if request: ppgpp_reaction_stoich = np.zeros_like(ppgpp_params["ppgpp_reaction_stoich"]) reactants = ppgpp_params["ppgpp_reaction_stoich"] < 0 ppgpp_reaction_stoich[reactants] = ppgpp_params["ppgpp_reaction_stoich"][ reactants ] else: ppgpp_reaction_stoich = ppgpp_params["ppgpp_reaction_stoich"] # Calculate the change in metabolites and adjust to limits if provided # Possible reactions are adjusted down to limits if the change in any # metabolites would result in negative counts max_iterations = int(n_deg_reactions + n_syn_reactions + 1) old_counts = None for it in range(max_iterations): delta_metabolites = ( ppgpp_reaction_stoich[:, ppgpp_params["synthesis_index"]] * n_syn_reactions + ppgpp_reaction_stoich[:, ppgpp_params["degradation_index"]] * n_deg_reactions ) if limits is None: break else: final_counts = delta_metabolites + limits if np.all(final_counts >= 0) or ( old_counts is not None and np.all(final_counts == old_counts) ): break limited_index = np.argmin(final_counts) if ( ppgpp_reaction_stoich[limited_index, ppgpp_params["synthesis_index"]] < 0 ): limited = np.ceil( final_counts[limited_index] / ppgpp_reaction_stoich[ limited_index, ppgpp_params["synthesis_index"] ] ) n_syn_reactions -= min(limited, n_syn_reactions) if ( ppgpp_reaction_stoich[limited_index, ppgpp_params["degradation_index"]] < 0 ): limited = np.ceil( final_counts[limited_index] / ppgpp_reaction_stoich[ limited_index, ppgpp_params["degradation_index"] ] ) n_deg_reactions -= min(limited, n_deg_reactions) old_counts = final_counts else: raise ValueError("Failed to meet molecule limits with ppGpp reactions.") return ( delta_metabolites, n_syn_reactions, n_deg_reactions, v_rela_syn, v_spot_syn, v_deg, v_deg_inhibited, )
[docs] def calculate_trna_charging( synthetase_conc: Unum, uncharged_trna_conc: Unum, charged_trna_conc: Unum, aa_conc: Unum, ribosome_conc: Unum, f: Unum, params: dict[str, Any], supply: Optional[Callable] = None, time_limit: float = 1000, limit_v_rib: bool = False, use_disabled_aas: bool = False, ) -> tuple[Unum, float, Unum, Unum, Unum]: """ Calculates the steady state value of tRNA based on charging and incorporation through polypeptide elongation. The fraction of charged/uncharged is also used to determine how quickly the ribosome is elongating. All concentrations are given in units of :py:data:`~ecoli.processes.polypeptide_elongation.MICROMOLAR_UNITS`. Args: synthetase_conc: concentration of synthetases associated with each amino acid uncharged_trna_conc: concentration of uncharged tRNA associated with each amino acid charged_trna_conc: concentration of charged tRNA associated with each amino acid aa_conc: concentration of each amino acid ribosome_conc: concentration of active ribosomes f: fraction of each amino acid to be incorporated to total amino acids incorporated params: parameters used in charging equations supply: function to get the rate of amino acid supply (synthesis and import) based on amino acid concentrations. If None, amino acid concentrations remain constant during charging time_limit: time limit to reach steady state limit_v_rib: if True, v_rib is limited to the number of amino acids that are available use_disabled_aas: if False, amino acids in :py:data:`~ecoli.processes.polypeptide_elongation.REMOVED_FROM_CHARGING` are excluded from charging Returns: 5-element tuple containing - **new_fraction_charged**: fraction of total tRNA that is charged for each amino acid species - **v_rib**: ribosomal elongation rate in units of uM/s - **total_synthesis**: the total amount of amino acids synthesized during charging in units of MICROMOLAR_UNITS. Will be zeros if supply function is not given. - **total_import**: the total amount of amino acids imported during charging in units of MICROMOLAR_UNITS. Will be zeros if supply function is not given. - **total_export**: the total amount of amino acids exported during charging in units of MICROMOLAR_UNITS. Will be zeros if supply function is not given. """ def negative_check(trna1: npt.NDArray[np.float64], trna2: npt.NDArray[np.float64]): """ Check for floating point precision issues that can lead to small negative numbers instead of 0. Adjusts both species of tRNA to bring concentration of trna1 to 0 and keep the same total concentration. Args: trna1: concentration of one tRNA species (charged or uncharged) trna2: concentration of another tRNA species (charged or uncharged) """ mask = trna1 < 0 trna2[mask] = trna1[mask] + trna2[mask] trna1[mask] = 0 def dcdt(t: float, c: npt.NDArray[np.float64]) -> npt.NDArray[np.float64]: """ Function for solve_ivp to integrate Args: c: 1D array of concentrations of uncharged and charged tRNAs dims: 2 * number of amino acids (uncharged tRNA come first, then charged) t: time of integration step Returns: Array of dc/dt for tRNA concentrations dims: 2 * number of amino acids (uncharged tRNA come first, then charged) """ v_charging, dtrna, daa = dcdt_jit( t, c, n_aas_masked, n_aas, mask, params["kS"], synthetase_conc, params["KMaa"], params["KMtf"], f, params["krta"], params["krtf"], params["max_elong_rate"], ribosome_conc, limit_v_rib, aa_rate_limit, v_rib_max, ) if supply is None: v_synthesis = np.zeros(n_aas) v_import = np.zeros(n_aas) v_export = np.zeros(n_aas) else: aa_conc = c[2 * n_aas_masked : 2 * n_aas_masked + n_aas] v_synthesis, v_import, v_export = supply(unit_conversion * aa_conc) v_supply = v_synthesis + v_import - v_export daa[mask] = v_supply[mask] - v_charging return np.hstack((-dtrna, dtrna, daa, v_synthesis, v_import, v_export)) # Convert inputs for integration synthetase_conc = synthetase_conc.asNumber(MICROMOLAR_UNITS) uncharged_trna_conc = uncharged_trna_conc.asNumber(MICROMOLAR_UNITS) charged_trna_conc = charged_trna_conc.asNumber(MICROMOLAR_UNITS) aa_conc = aa_conc.asNumber(MICROMOLAR_UNITS) ribosome_conc = ribosome_conc.asNumber(MICROMOLAR_UNITS) unit_conversion = params["unit_conversion"] # Remove disabled amino acids from calculations n_total_aas = len(aa_conc) if use_disabled_aas: mask = np.ones(n_total_aas, bool) else: mask = params["charging_mask"] synthetase_conc = synthetase_conc[mask] original_uncharged_trna_conc = uncharged_trna_conc[mask] original_charged_trna_conc = charged_trna_conc[mask] original_aa_conc = aa_conc[mask] f = f[mask] n_aas = len(aa_conc) n_aas_masked = len(original_aa_conc) # Limits for integration aa_rate_limit = original_aa_conc / time_limit trna_rate_limit = original_charged_trna_conc / time_limit v_rib_max = max(0, ((aa_rate_limit + trna_rate_limit) / f).min()) # Integrate rates of charging and elongation c_init = np.hstack( ( original_uncharged_trna_conc, original_charged_trna_conc, aa_conc, np.zeros(n_aas), np.zeros(n_aas), np.zeros(n_aas), ) ) sol = solve_ivp(dcdt, [0, time_limit], c_init, method="BDF") c_sol = sol.y.T # Determine new values from integration results final_uncharged_trna_conc = c_sol[-1, :n_aas_masked] final_charged_trna_conc = c_sol[-1, n_aas_masked : 2 * n_aas_masked] total_synthesis = c_sol[-1, 2 * n_aas_masked + n_aas : 2 * n_aas_masked + 2 * n_aas] total_import = c_sol[ -1, 2 * n_aas_masked + 2 * n_aas : 2 * n_aas_masked + 3 * n_aas ] total_export = c_sol[ -1, 2 * n_aas_masked + 3 * n_aas : 2 * n_aas_masked + 4 * n_aas ] negative_check(final_uncharged_trna_conc, final_charged_trna_conc) negative_check(final_charged_trna_conc, final_uncharged_trna_conc) fraction_charged = final_charged_trna_conc / ( final_uncharged_trna_conc + final_charged_trna_conc ) numerator_ribosome = 1 + np.sum( f * ( params["krta"] / final_charged_trna_conc + final_uncharged_trna_conc / final_charged_trna_conc * params["krta"] / params["krtf"] ) ) v_rib = params["max_elong_rate"] * ribosome_conc / numerator_ribosome if limit_v_rib: v_rib_max = max( 0, ( ( original_aa_conc + (original_charged_trna_conc - final_charged_trna_conc) ) / time_limit / f ).min(), ) v_rib = min(v_rib, v_rib_max) # Replace SEL fraction charged with average new_fraction_charged = np.zeros(n_total_aas) new_fraction_charged[mask] = fraction_charged new_fraction_charged[~mask] = fraction_charged.mean() return new_fraction_charged, v_rib, total_synthesis, total_import, total_export
[docs] @njit(error_model="numpy") def dcdt_jit( t, c, n_aas_masked, n_aas, mask, kS, synthetase_conc, KMaa, KMtf, f, krta, krtf, max_elong_rate, ribosome_conc, limit_v_rib, aa_rate_limit, v_rib_max, ): uncharged_trna_conc = c[:n_aas_masked] charged_trna_conc = c[n_aas_masked : 2 * n_aas_masked] aa_conc = c[2 * n_aas_masked : 2 * n_aas_masked + n_aas] masked_aa_conc = aa_conc[mask] v_charging = ( kS * synthetase_conc * uncharged_trna_conc * masked_aa_conc / (KMaa[mask] * KMtf[mask]) / ( 1 + uncharged_trna_conc / KMtf[mask] + masked_aa_conc / KMaa[mask] + uncharged_trna_conc * masked_aa_conc / KMtf[mask] / KMaa[mask] ) ) numerator_ribosome = 1 + np.sum( f * ( krta / charged_trna_conc + uncharged_trna_conc / charged_trna_conc * krta / krtf ) ) v_rib = max_elong_rate * ribosome_conc / numerator_ribosome # Handle case when f is 0 and charged_trna_conc is 0 if not np.isfinite(v_rib): v_rib = 0 # Limit v_rib and v_charging to the amount of available amino acids if limit_v_rib: v_charging = np.fmin(v_charging, aa_rate_limit) v_rib = min(v_rib, v_rib_max) dtrna = v_charging - v_rib * f daa = np.zeros(n_aas) return v_charging, dtrna, daa
[docs] def get_charging_supply_function( supply_in_charging: bool, mechanistic_supply: bool, mechanistic_aa_transport: bool, amino_acid_synthesis: Callable, amino_acid_import: Callable, amino_acid_export: Callable, aa_supply_scaling: Callable, counts_to_molar: Unum, aa_supply: npt.NDArray[np.float64], fwd_enzyme_counts: npt.NDArray[np.int64], rev_enzyme_counts: npt.NDArray[np.int64], dry_mass: Unum, importer_counts: npt.NDArray[np.int64], exporter_counts: npt.NDArray[np.int64], aa_in_media: npt.NDArray[np.bool_], ) -> Optional[Callable[[npt.NDArray[np.float64]], Tuple[Unum, Unum, Unum]]]: """ Get a function mapping internal amino acid concentrations to the amount of amino acid supply expected. Args: supply_in_charging: True if using aa_supply_in_charging option mechanistic_supply: True if using mechanistic_translation_supply option mechanistic_aa_transport: True if using mechanistic_aa_transport option amino_acid_synthesis: function to provide rates of synthesis for amino acids based on the internal state amino_acid_import: function to provide import rates for amino acids based on the internal and external state amino_acid_export: function to provide export rates for amino acids based on the internal state aa_supply_scaling: function to scale the amino acid supply based on the internal state counts_to_molar: conversion factor for counts to molar (:py:data:`~ecoli.processes.polypeptide_elongation.MICROMOLAR_UNITS`) aa_supply: rate of amino acid supply expected fwd_enzyme_counts: enzyme counts in forward reactions for each amino acid rev_enzyme_counts: enzyme counts in loss reactions for each amino acid dry_mass: dry mass of the cell with mass units importer_counts: counts for amino acid importers exporter_counts: counts for amino acid exporters aa_in_media: True for each amino acid that is present in the media Returns: Function that provides the amount of supply (synthesis, import, export) for each amino acid based on the internal state of the cell """ # Create functions that are only dependent on amino acid concentrations for more stable # charging and amino acid concentrations. If supply_in_charging is not set, then # setting None will maintain constant amino acid concentrations throughout charging. supply_function = None if supply_in_charging: counts_to_molar = counts_to_molar.asNumber(MICROMOLAR_UNITS) zeros = counts_to_molar * np.zeros_like(aa_supply) if mechanistic_supply: if mechanistic_aa_transport: def supply_function(aa_conc): return ( counts_to_molar * amino_acid_synthesis( fwd_enzyme_counts, rev_enzyme_counts, aa_conc )[0], counts_to_molar * amino_acid_import( aa_in_media, dry_mass, aa_conc, importer_counts, mechanistic_aa_transport, ), counts_to_molar * amino_acid_export( exporter_counts, aa_conc, mechanistic_aa_transport ), ) else: def supply_function(aa_conc): return ( counts_to_molar * amino_acid_synthesis( fwd_enzyme_counts, rev_enzyme_counts, aa_conc )[0], counts_to_molar * amino_acid_import( aa_in_media, dry_mass, aa_conc, importer_counts, mechanistic_aa_transport, ), zeros, ) else: def supply_function(aa_conc): return ( counts_to_molar * aa_supply * aa_supply_scaling(aa_conc, aa_in_media), zeros, zeros, ) return supply_function
def test_polypeptide_elongation(return_data=False): def make_elongation_rates(random, base, time_step, variable_elongation=False): size = 1 lengths = time_step * np.full(size, base, dtype=np.int64) lengths = stochasticRound(random, lengths) if random else np.round(lengths) return lengths.astype(np.int64) test_config = { "time_step": 2, "proteinIds": np.array(["TRYPSYN-APROTEIN[c]"]), "ribosome30S": "CPLX0-3953[c]", "ribosome50S": "CPLX0-3962[c]", "make_elongation_rates": make_elongation_rates, "proteinLengths": np.array( [245] ), # this is the length of proteins in proteinSequences "translation_aa_supply": { "minimal": (units.mol / units.fg / units.min) * np.array( [ 6.73304301e-21, 3.63835219e-21, 2.89772671e-21, 3.88086822e-21, 5.04645651e-22, 4.45295877e-21, 2.64600664e-21, 5.35711230e-21, 1.26817689e-21, 3.81168405e-21, 5.66834531e-21, 4.30576056e-21, 1.70428208e-21, 2.24878356e-21, 2.49335033e-21, 3.47019761e-21, 3.83858460e-21, 6.34564026e-22, 1.86880523e-21, 1.40959498e-27, 5.20884460e-21, ] ) }, "proteinSequences": np.array( [ [ 12, 10, 18, 9, 13, 1, 10, 9, 9, 16, 20, 9, 18, 15, 9, 10, 20, 4, 20, 13, 7, 15, 9, 18, 4, 10, 13, 15, 14, 1, 2, 14, 11, 8, 20, 0, 16, 13, 7, 8, 12, 13, 7, 1, 10, 0, 14, 10, 13, 7, 10, 11, 20, 5, 4, 1, 11, 14, 16, 3, 0, 5, 15, 18, 7, 2, 0, 9, 18, 9, 0, 2, 8, 6, 2, 2, 18, 3, 12, 20, 16, 0, 15, 2, 9, 20, 6, 14, 14, 16, 20, 16, 20, 7, 11, 11, 15, 10, 10, 17, 9, 14, 13, 13, 7, 6, 10, 18, 17, 10, 16, 7, 2, 10, 10, 9, 3, 1, 2, 2, 1, 16, 11, 0, 8, 7, 16, 9, 0, 5, 20, 20, 2, 8, 13, 11, 11, 1, 1, 9, 15, 9, 17, 12, 13, 14, 5, 7, 16, 1, 15, 1, 7, 1, 7, 10, 10, 14, 13, 11, 16, 7, 0, 13, 8, 0, 0, 9, 0, 0, 7, 20, 14, 9, 9, 14, 20, 4, 20, 15, 16, 16, 15, 2, 11, 9, 2, 10, 2, 1, 10, 8, 2, 7, 10, 20, 9, 20, 5, 12, 10, 14, 14, 9, 3, 20, 15, 6, 18, 7, 11, 3, 6, 20, 1, 5, 10, 0, 0, 8, 4, 1, 15, 9, 12, 5, 6, 11, 9, 0, 5, 10, 3, 11, 5, 20, 0, 5, 1, 5, 0, 0, 7, 11, 20, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ] ] ).astype(np.int8), } polypep_elong = PolypeptideElongation(test_config) initial_state = { "environment": {"media_id": "minimal"}, "bulk": np.array( [ ("CPLX0-3953[c]", 100), ("CPLX0-3962[c]", 100), ("TRYPSYN-APROTEIN[c]", 0), ("RELA", 0), ("SPOT", 0), ("H2O", 0), ("PROTON", 0), ("ppGpp", 0), ] + [(aa, 100) for aa in DEFAULT_AA_NAMES], dtype=[("id", "U40"), ("count", int)], ), "unique": { "active_ribosome": np.array( [(1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)], dtype=[ ("_entryState", np.bool_), ("unique_index", int), ("protein_index", int), ("peptide_length", int), ("pos_on_mRNA", int), ("massDiff_DNA", "<f8"), ("massDiff_mRNA", "<f8"), ("massDiff_metabolite", "<f8"), ("massDiff_miscRNA", "<f8"), ("massDiff_nonspecific_RNA", "<f8"), ("massDiff_protein", "<f8"), ("massDiff_rRNA", "<f8"), ("massDiff_tRNA", "<f8"), ("massDiff_water", "<f8"), ], ) }, "listeners": {"mass": {"dry_mass": 350.0}}, } settings = {"total_time": 200, "initial_state": initial_state, "topology": TOPOLOGY} data = simulate_process(polypep_elong, settings) if return_data: return data, test_config
[docs] def run_plot(data, config): # plot a list of variables bulk_ids = [ "CPLX0-3953[c]", "CPLX0-3962[c]", "TRYPSYN-APROTEIN[c]", "RELA", "SPOT", "H2O", "PROTON", "ppGpp", ] + [aa for aa in DEFAULT_AA_NAMES] variables = [(bulk_id,) for bulk_id in bulk_ids] # format data bulk_timeseries = np.array(data["bulk"]) for i, bulk_id in enumerate(bulk_ids): data[bulk_id] = bulk_timeseries[:, i] plot_variables( data, variables=variables, out_dir="out/processes/polypeptide_elongation", filename="variables", )
[docs] def main(): data, config = test_polypeptide_elongation(return_data=True) run_plot(data, config)
if __name__ == "__main__": main()