Source code for ecoli.processes.transcript_elongation

"""
=====================
Transcript Elongation
=====================

This process models nucleotide polymerization into RNA molecules
by RNA polymerases. Polymerization occurs across all polymerases
simultaneously and resources are allocated to maximize the progress
of all polymerases up to the limit of the expected polymerase elongation
rate and available nucleotides. The termination of RNA elongation occurs
once a RNA polymerase has reached the end of the annotated gene.
"""

from os import makedirs
import numpy as np
from copy import deepcopy
import warnings

from vivarium.core.engine import Engine

from wholecell.utils.random import stochasticRound
from wholecell.utils.polymerize import buildSequences, polymerize, computeMassIncrease
from wholecell.utils import units

from ecoli.library.schema import (
    counts,
    attrs,
    numpy_schema,
    bulk_name_to_idx,
    listener_schema,
)
from ecoli.library.data_predicates import monotonically_increasing
from ecoli.processes.registries import topology_registry
from ecoli.processes.partition import PartitionedProcess
from ecoli.processes.unique_update import UniqueUpdate


# Register default topology for this process, associating it with process name
NAME = "ecoli-transcript-elongation"
TOPOLOGY = {
    "environment": ("environment",),
    "RNAs": ("unique", "RNA"),
    "active_RNAPs": ("unique", "active_RNAP"),
    "bulk": ("bulk",),
    "bulk_total": ("bulk",),
    "listeners": ("listeners",),
    "timestep": ("timestep",),
}
topology_registry.register(NAME, TOPOLOGY)


[docs] def make_elongation_rates(random, rates, timestep, variable): return rates
[docs] def get_attenuation_stop_probabilities(trna_conc): return np.array([])
[docs] class TranscriptElongation(PartitionedProcess): """Transcript Elongation PartitionedProcess defaults: - max_time_step (float) : ??? - rnaPolymeraseElongationRateDict (dict): Array with elongation rate set points for different media environments. - rnaIds (array[str]) : array of names for each TU - rnaLengths (array[int]) : array of lengths for each TU (in nucleotides?) - rnaSequences (2D array[int]) : Array with the nucleotide sequences of each TU. This is in the form of a 2D array where each row is a TU, and each column is a position in the TU's sequence. Nucleotides are stored as an index {0, 1, 2, 3}, and the row is padded with -1's on the right to indicate where the sequence ends. - ntWeights (array[float]): Array of nucleotide weights - endWeight (array[float]): ???, - replichore_lengths (array[int]): lengths of replichores (in nucleotides?), - is_mRNA (array[bool]): Mask for mRNAs - ppi (str): ID of PPI - inactive_RNAP (str): ID of inactive RNAP - ntp_ids list[str]: IDs of ntp's (A, C, G, U) - variable_elongation (bool): Whether to use variable elongation. False by default. - make_elongation_rates: Function to make elongation rates, of the form: lambda random, rates, timestep, variable: rates """ name = NAME topology = TOPOLOGY defaults = { "max_time_step": 0.0, # Parameters "rnaPolymeraseElongationRateDict": {}, "rnaIds": [], "rnaLengths": np.array([]), "rnaSequences": np.array([[]]), "ntWeights": np.array([]), "endWeight": np.array([]), "replichore_lengths": np.array([]), "n_fragment_bases": 0, "recycle_stalled_elongation": False, "submass_indices": {}, # mask for mRNAs "is_mRNA": np.array([]), # Bulk molecules "inactive_RNAP": "", "ppi": "", "ntp_ids": [], "variable_elongation": False, "make_elongation_rates": make_elongation_rates, "fragmentBases": [], "polymerized_ntps": [], "charged_trnas": [], # Attenuation "trna_attenuation": False, "cell_density": 1100 * units.g / units.L, "n_avogadro": 6.02214076e23 / units.mol, "get_attenuation_stop_probabilities": (get_attenuation_stop_probabilities), "attenuated_rna_indices": np.array([], dtype=int), "location_lookup": {}, "seed": 0, "emit_unique": False, "time_step": 1, } def __init__(self, parameters=None): super().__init__(parameters) self.max_time_step = self.parameters["max_time_step"] # Load parameters self.rnaPolymeraseElongationRateDict = self.parameters[ "rnaPolymeraseElongationRateDict" ] self.rnaIds = self.parameters["rnaIds"] self.rnaLengths = self.parameters["rnaLengths"] self.rnaSequences = self.parameters["rnaSequences"] self.ppi = self.parameters["ppi"] self.inactive_RNAP = self.parameters["inactive_RNAP"] self.fragmentBases = self.parameters["fragmentBases"] self.charged_trnas = self.parameters["charged_trnas"] self.ntp_ids = self.parameters["ntp_ids"] self.ntWeights = self.parameters["ntWeights"] self.endWeight = self.parameters["endWeight"] self.replichore_lengths = self.parameters["replichore_lengths"] self.chromosome_length = self.replichore_lengths.sum() self.n_fragment_bases = self.parameters["n_fragment_bases"] self.recycle_stalled_elongation = self.parameters["recycle_stalled_elongation"] # Mask for mRNAs self.is_mRNA = self.parameters["is_mRNA"] self.variable_elongation = self.parameters["variable_elongation"] self.make_elongation_rates = self.parameters["make_elongation_rates"] self.polymerized_ntps = self.parameters["polymerized_ntps"] self.charged_trna_names = self.parameters["charged_trnas"] # Attenuation self.trna_attenuation = self.parameters["trna_attenuation"] self.cell_density = self.parameters["cell_density"] self.n_avogadro = self.parameters["n_avogadro"] self.stop_probabilities = self.parameters["get_attenuation_stop_probabilities"] self.attenuated_rna_indices = self.parameters["attenuated_rna_indices"] self.attenuated_rna_indices_lookup = { idx: i for i, idx in enumerate(self.attenuated_rna_indices) } self.attenuated_rnas = self.rnaIds[self.attenuated_rna_indices] self.location_lookup = self.parameters["location_lookup"] # random seed self.seed = self.parameters["seed"] self.random_state = np.random.RandomState(seed=self.seed) # Helper indices for Numpy indexing self.bulk_RNA_idx = None
[docs] def ports_schema(self): return { "environment": {"media_id": {"_default": ""}}, "RNAs": numpy_schema("RNAs", emit=self.parameters["emit_unique"]), "active_RNAPs": numpy_schema( "active_RNAPs", emit=self.parameters["emit_unique"] ), "bulk": numpy_schema("bulk"), "bulk_total": numpy_schema("bulk"), "listeners": { "mass": listener_schema({"cell_mass": 0.0}), "transcript_elongation_listener": listener_schema( { "count_NTPs_used": 0, "count_rna_synthesized": ([0] * len(self.rnaIds), self.rnaIds), "attenuation_probability": ( [0.0] * len(self.attenuated_rnas), self.attenuated_rnas, ), "counts_attenuated": ( [0] * len(self.attenuated_rnas), self.attenuated_rnas, ), } ), "growth_limits": listener_schema( { "ntp_used": ([0] * len(self.ntp_ids), self.ntp_ids), "ntp_pool_size": ([0] * len(self.ntp_ids), self.ntp_ids), "ntp_request_size": ([0] * len(self.ntp_ids), self.ntp_ids), "ntp_allocated": ([0] * len(self.ntp_ids), self.ntp_ids), } ), "rnap_data": listener_schema( { "actual_elongations": 0, "did_terminate": 0, "termination_loss": 0, "did_stall": 0, } ), }, "timestep": {"_default": self.parameters["time_step"]}, }
[docs] def calculate_request(self, timestep, states): # At first update, convert all strings to indices if self.bulk_RNA_idx is None: bulk_ids = states["bulk"]["id"] self.bulk_RNA_idx = bulk_name_to_idx(self.rnaIds, bulk_ids) self.ntps_idx = bulk_name_to_idx(self.ntp_ids, bulk_ids) self.ppi_idx = bulk_name_to_idx(self.ppi, bulk_ids) self.inactive_RNAP_idx = bulk_name_to_idx(self.inactive_RNAP, bulk_ids) self.fragmentBases_idx = bulk_name_to_idx(self.fragmentBases, bulk_ids) self.charged_trnas_idx = bulk_name_to_idx(self.charged_trnas, bulk_ids) # Calculate elongation rate based on the current media current_media_id = states["environment"]["media_id"] self.rnapElongationRate = self.rnaPolymeraseElongationRateDict[ current_media_id ].asNumber(units.nt / units.s) self.elongation_rates = self.make_elongation_rates( self.random_state, self.rnapElongationRate, states["timestep"], self.variable_elongation, ) # If there are no active RNA polymerases, return immediately if states["active_RNAPs"]["_entryState"].sum() == 0: return {} # Determine total possible sequences of nucleotides that can be # transcribed in this time step for each partial transcript TU_indexes, transcript_lengths, is_full_transcript = attrs( states["RNAs"], ["TU_index", "transcript_length", "is_full_transcript"] ) is_partial_transcript = np.logical_not(is_full_transcript) TU_indexes_partial = TU_indexes[is_partial_transcript] transcript_lengths_partial = transcript_lengths[is_partial_transcript] sequences = buildSequences( self.rnaSequences, TU_indexes_partial, transcript_lengths_partial, self.elongation_rates, ) sequenceComposition = np.bincount( sequences[sequences != polymerize.PAD_VALUE], minlength=4 ) # Calculate if any nucleotides are limited and request up to the number # in the sequences or number available ntpsTotal = counts(states["bulk"], self.ntps_idx) maxFractionalReactionLimit = np.fmin(1, ntpsTotal / sequenceComposition) requests = { "bulk": [ ( self.ntps_idx, (maxFractionalReactionLimit * sequenceComposition).astype(int), ) ] } requests["listeners"] = { "growth_limits": { "ntp_pool_size": counts(states["bulk"], self.ntps_idx), "ntp_request_size": ( maxFractionalReactionLimit * sequenceComposition ).astype(int), } } return requests
[docs] def evolve_state(self, timestep, states): ntpCounts = counts(states["bulk"], self.ntps_idx) # If there are no active RNA polymerases, return immediately if states["active_RNAPs"]["_entryState"].sum() == 0: return { "listeners": { "transcript_elongation_listener": { "count_NTPs_used": 0, "count_rna_synthesized": np.zeros(len(self.rnaIds)), }, "growth_limits": { "ntp_used": np.zeros(len(self.ntp_ids)), "ntp_allocated": ntpCounts, }, "rnap_data": { "actual_elongations": 0, "did_terminate": 0, "termination_loss": 0, }, }, "active_RNAPs": {}, "RNAs": {}, } # Get attributes from existing RNAs ( TU_index_all_RNAs, length_all_RNAs, is_full_transcript, is_mRNA_all_RNAs, RNAP_index_all_RNAs, ) = attrs( states["RNAs"], [ "TU_index", "transcript_length", "is_full_transcript", "is_mRNA", "RNAP_index", ], ) length_all_RNAs = length_all_RNAs.copy() update = {"listeners": {"growth_limits": {}}} # Determine sequences of RNAs that should be elongated is_partial_transcript = np.logical_not(is_full_transcript) partial_transcript_indexes = np.where(is_partial_transcript)[0] TU_index_partial_RNAs = TU_index_all_RNAs[is_partial_transcript] length_partial_RNAs = length_all_RNAs[is_partial_transcript] is_mRNA_partial_RNAs = is_mRNA_all_RNAs[is_partial_transcript] RNAP_index_partial_RNAs = RNAP_index_all_RNAs[is_partial_transcript] if self.trna_attenuation: cell_mass = states["listeners"]["mass"]["cell_mass"] cellVolume = cell_mass * units.fg / self.cell_density counts_to_molar = 1 / (self.n_avogadro * cellVolume) attenuation_probability = self.stop_probabilities( counts_to_molar * counts(states["bulk_total"], self.charged_trnas_idx) ) prob_lookup = { tu: prob for tu, prob in zip( self.attenuated_rna_indices, attenuation_probability ) } tu_stop_probability = np.array( [ prob_lookup.get(idx, 0) * (length < self.location_lookup.get(idx, 0)) for idx, length in zip(TU_index_partial_RNAs, length_partial_RNAs) ] ) rna_to_attenuate = stochasticRound( self.random_state, tu_stop_probability ).astype(bool) else: attenuation_probability = np.zeros(len(self.attenuated_rna_indices)) rna_to_attenuate = np.zeros(len(TU_index_partial_RNAs), bool) rna_to_elongate = ~rna_to_attenuate sequences = buildSequences( self.rnaSequences, TU_index_partial_RNAs, length_partial_RNAs, self.elongation_rates, ) # Polymerize transcripts based on sequences and available nucleotides reactionLimit = ntpCounts.sum() result = polymerize( sequences[rna_to_elongate], ntpCounts, reactionLimit, self.random_state, self.elongation_rates[TU_index_partial_RNAs][rna_to_elongate], self.variable_elongation, ) sequence_elongations = np.zeros_like(length_partial_RNAs) sequence_elongations[rna_to_elongate] = result.sequenceElongation ntps_used = result.monomerUsages did_stall_mask = result.sequences_limited_elongation # Calculate changes in mass associated with polymerization added_mass = computeMassIncrease( sequences, sequence_elongations, self.ntWeights ) did_initialize = (length_partial_RNAs == 0) & (sequence_elongations > 0) added_mass[did_initialize] += self.endWeight # Calculate updated transcript lengths updated_transcript_lengths = length_partial_RNAs + sequence_elongations # Get attributes of active RNAPs coordinates, is_forward, RNAP_unique_index = attrs( states["active_RNAPs"], ["coordinates", "is_forward", "unique_index"] ) # Active RNAP count should equal partial transcript count assert len(RNAP_unique_index) == len(RNAP_index_partial_RNAs) # All partial RNAs must be linked to an RNAP assert np.count_nonzero(RNAP_index_partial_RNAs == -1) == 0 # Get mapping indexes between partial RNAs to RNAPs partial_RNA_to_RNAP_mapping, _ = get_mapping_arrays( RNAP_index_partial_RNAs, RNAP_unique_index ) # Rescale boolean array of directions to an array of 1's and -1's. # True is converted to 1, False is converted to -1. direction_rescaled = (2 * (is_forward - 0.5)).astype(np.int64) # Compute the updated coordinates of RNAPs. Coordinates of RNAPs # moving in the positive direction are increased, whereas coordinates # of RNAPs moving in the negative direction are decreased. updated_coordinates = coordinates + np.multiply( direction_rescaled, sequence_elongations[partial_RNA_to_RNAP_mapping] ) # Reset coordinates of RNAPs that cross the boundaries between right # and left replichores updated_coordinates[updated_coordinates > self.replichore_lengths[0]] -= ( self.chromosome_length ) updated_coordinates[updated_coordinates < -self.replichore_lengths[1]] += ( self.chromosome_length ) # Update transcript lengths of RNAs and coordinates of RNAPs length_all_RNAs[is_partial_transcript] = updated_transcript_lengths # Update added submasses of RNAs. Masses of partial mRNAs are counted # as mRNA mass as they are already functional, but the masses of other # types of partial RNAs are counted as nonspecific RNA mass. added_nsRNA_mass_all_RNAs = np.zeros_like(TU_index_all_RNAs, dtype=np.float64) added_mRNA_mass_all_RNAs = np.zeros_like(TU_index_all_RNAs, dtype=np.float64) added_nsRNA_mass_all_RNAs[is_partial_transcript] = np.multiply( added_mass, np.logical_not(is_mRNA_partial_RNAs) ) added_mRNA_mass_all_RNAs[is_partial_transcript] = np.multiply( added_mass, is_mRNA_partial_RNAs ) # Determine if transcript has reached the end of the sequence terminal_lengths = self.rnaLengths[TU_index_partial_RNAs] did_terminate_mask = updated_transcript_lengths == terminal_lengths terminated_RNAs = np.bincount( TU_index_partial_RNAs[did_terminate_mask], minlength=self.rnaSequences.shape[0], ) # Update is_full_transcript attribute of RNAs is_full_transcript_updated = is_full_transcript.copy() is_full_transcript_updated[partial_transcript_indexes[did_terminate_mask]] = ( True ) n_terminated = did_terminate_mask.sum() n_initialized = did_initialize.sum() n_elongations = ntps_used.sum() # Get counts of new bulk RNAs n_new_bulk_RNAs = terminated_RNAs.copy() n_new_bulk_RNAs[self.is_mRNA] = 0 update["RNAs"] = { "set": { "transcript_length": length_all_RNAs, "is_full_transcript": is_full_transcript_updated, "massDiff_nonspecific_RNA": attrs( states["RNAs"], ["massDiff_nonspecific_RNA"] )[0] + added_nsRNA_mass_all_RNAs, "massDiff_mRNA": attrs(states["RNAs"], ["massDiff_mRNA"])[0] + added_mRNA_mass_all_RNAs, }, "delete": partial_transcript_indexes[ np.logical_and(did_terminate_mask, np.logical_not(is_mRNA_partial_RNAs)) ], } update["active_RNAPs"] = { "set": {"coordinates": updated_coordinates}, "delete": np.where(did_terminate_mask[partial_RNA_to_RNAP_mapping])[0], } # Attenuation removes RNAs and RNAPs counts_attenuated = np.zeros(len(self.attenuated_rna_indices), dtype=int) if np.any(rna_to_attenuate): for idx in TU_index_partial_RNAs[rna_to_attenuate]: counts_attenuated[self.attenuated_rna_indices_lookup[idx]] += 1 update["RNAs"]["delete"] = np.append( update["RNAs"]["delete"], partial_transcript_indexes[rna_to_attenuate] ) update["active_RNAPs"]["delete"] = np.append( update["active_RNAPs"]["delete"], np.where(rna_to_attenuate[partial_RNA_to_RNAP_mapping])[0], ) n_attenuated = rna_to_attenuate.sum() # Handle stalled elongation n_total_stalled = did_stall_mask.sum() if self.recycle_stalled_elongation and (n_total_stalled > 0): # Remove RNAPs that were bound to stalled elongation transcripts # and increment counts of inactive RNAPs update["active_RNAPs"]["delete"] = np.append( update["active_RNAPs"]["delete"], np.where(did_stall_mask[partial_RNA_to_RNAP_mapping])[0], ) update["bulk"].append((self.inactive_RNAP_idx, n_total_stalled)) # Remove partial transcripts from stalled elongation update["RNAs"]["delete"] = np.append( update["RNAs"]["delete"], partial_transcript_indexes[did_stall_mask] ) stalled_sequence_lengths = updated_transcript_lengths[did_stall_mask] n_initiated_sequences = np.count_nonzero(stalled_sequence_lengths) if n_initiated_sequences > 0: # Get the full sequence of stalled transcripts stalled_sequences = buildSequences( self.rnaSequences, TU_index_partial_RNAs[did_stall_mask], np.zeros(n_total_stalled, dtype=np.int64), np.full(n_total_stalled, updated_transcript_lengths.max()), ) # Count the number of fragment bases in these transcripts up # until the stalled length base_counts = np.zeros(self.n_fragment_bases, dtype=np.int64) for sl, seq in zip(stalled_sequence_lengths, stalled_sequences): base_counts += np.bincount( seq[:sl], minlength=self.n_fragment_bases ) # Increment counts of fragment NTPs and phosphates update["bulk"].append((self.fragmentBases_idx, base_counts)) update["bulk"].append((self.ppi_idx, n_initiated_sequences)) update.setdefault("bulk", []).append((self.ntps_idx, -ntps_used)) update["bulk"].append((self.bulk_RNA_idx, n_new_bulk_RNAs)) update["bulk"].append((self.inactive_RNAP_idx, n_terminated + n_attenuated)) update["bulk"].append((self.ppi_idx, n_elongations - n_initialized)) # Write outputs to listeners update["listeners"]["transcript_elongation_listener"] = { "count_rna_synthesized": terminated_RNAs, "count_NTPs_used": n_elongations, "attenuation_probability": attenuation_probability, "counts_attenuated": counts_attenuated, } update["listeners"]["growth_limits"] = {"ntp_used": ntps_used} update["listeners"]["rnap_data"] = { "actual_elongations": sequence_elongations.sum(), "did_terminate": did_terminate_mask.sum(), "termination_loss": (terminal_lengths - length_partial_RNAs)[ did_terminate_mask ].sum(), "did_stall": n_total_stalled, } return update
[docs] def isTimeStepShortEnough(self, inputTimeStep, timeStepSafetyFraction): return inputTimeStep <= self.max_time_step
[docs] def get_mapping_arrays(x, y): """ Returns the array of indexes of each element of array x in array y, and vice versa. Assumes that the elements of x and y are unique, and set(x) == set(y). """ def argsort_unique(idx): """ Quicker argsort for arrays that are permutations of np.arange(n). """ n = idx.size argsort_idx = np.empty(n, dtype=np.int64) argsort_idx[idx] = np.arange(n) return argsort_idx x_argsort = np.argsort(x) y_argsort = np.argsort(y) x_to_y = x_argsort[argsort_unique(y_argsort)] y_to_x = y_argsort[argsort_unique(x_argsort)] return x_to_y, y_to_x
[docs] def format_data(data, bulk_ids, rna_dtypes, rnap_dtypes, submass_dtypes): # Format unique and bulk data for assertions data["unique"]["RNA"] = [ np.array(list(map(tuple, zip(*val))), dtype=rna_dtypes + submass_dtypes) for val in data["unique"]["RNA"] ] data["unique"]["active_RNAP"] = [ np.array(list(map(tuple, zip(*val))), dtype=rnap_dtypes + submass_dtypes) for val in data["unique"]["active_RNAP"] ] bulk_timeseries = np.array(data["bulk"]) data["bulk"] = { bulk_id: bulk_timeseries[:, i] for i, bulk_id in enumerate(bulk_ids) } return data
def test_transcript_elongation(): def make_elongation_rates(random, base, time_step, variable_elongation=False): size = 9 # number of TUs lengths = time_step * np.full(size, base, dtype=np.int64) lengths = stochasticRound(random, lengths) if random else np.round(lengths) return lengths.astype(np.int64) test_config = TranscriptElongation.defaults test_config["max_time_step"] = 2.0 with open("data/elongation_sequences.npy", "rb") as f: sequences = np.load(f) rna_schema = numpy_schema("RNAs", emit=True) rnap_schema = numpy_schema("active_RNAPs", emit=True) test_config = { "max_time_step": 2.0, "rnaPolymeraseElongationRateDict": {"minimal": 49.24 * units.nt / units.s}, "rnaIds": np.array(["16S rRNA", "23S rRNA", "5S rRNA", "mRNA"]), "rnaLengths": np.array([1542, 2905, 120, 1080]), "rnaSequences": sequences, "ntWeights": np.array( [5.44990582e-07, 5.05094471e-07, 5.71557547e-07, 5.06728441e-07] ), "endWeight": np.array([2.90509649e-07]), "replichore_lengths": np.array([2322985, 2316690]), "idx_16S_rRNA": np.array([0]), "idx_23S_rRNA": np.array([1]), "idx_5S_rRNA": np.array([2]), "is_mRNA": np.array([False, False, False, True]), "ppi": "PPI[c]", "inactive_RNAP": "APORNAP-CPLX[c]", "ntp_ids": ["ATP[c]", "CTP[c]", "GTP[c]", "UTP[c]"], "variable_elongation": False, "make_elongation_rates": make_elongation_rates, "seed": 0, # Make sure to emit RNA and RNAP data "_schema": {"RNAs": rna_schema, "active_RNAPs": rnap_schema}, } transcript_elongation = TranscriptElongation(test_config) # Need to add UniqueUpdate Step so unique molecule are updated each timestep unique_topo = {"RNAs": ("unique", "RNA"), "active_RNAPs": ("unique", "active_RNAP")} unique_update = UniqueUpdate({"unique_topo": unique_topo}) submass_dtypes = [ ("massDiff_DNA", "<f8"), ("massDiff_mRNA", "<f8"), ("massDiff_metabolite", "<f8"), ("massDiff_miscRNA", "<f8"), ("massDiff_nonspecific_RNA", "<f8"), ("massDiff_protein", "<f8"), ("massDiff_rRNA", "<f8"), ("massDiff_tRNA", "<f8"), ("massDiff_water", "<f8"), ] rna_dtypes = [ ("_entryState", np.bool_), ("unique_index", int), ("TU_index", int), ("transcript_length", int), ("is_mRNA", np.bool_), ("is_full_transcript", np.bool_), ("can_translate", np.bool_), ("RNAP_index", int), ] rnap_dtypes = [ ("_entryState", np.bool_), ("unique_index", int), ("domain_index", int), ("coordinates", int), ("is_forward", np.bool_), ] initial_state = { "environment": {"media_id": "minimal"}, "unique": { "RNA": np.array( [ (1, i, i, 0, test_config["is_mRNA"][i], False, True, i) + (0,) * 9 for i in range(len(test_config["rnaIds"])) ], dtype=rna_dtypes + submass_dtypes, ), "active_RNAP": np.array( [(1, i, 2, i * 1000, True) + (0,) * 9 for i in range(4)], dtype=rnap_dtypes + submass_dtypes, ), }, "bulk": np.array( [ ("16S rRNA", 0), ("23S rRNA", 0), ("5S rRNA", 0), ("mRNA", 0), ("ATP[c]", 6178058), ("CTP[c]", 1152211), ("GTP[c]", 1369694), ("UTP[c]", 3024874), ("PPI[c]", 320771), ("APORNAP-CPLX[c]", 2768), ], dtype=[("id", "U40"), ("count", int)], ), } settings = { "processes": { "unique-update": unique_update, "ecoli-transcript-elongation": transcript_elongation, }, "topology": { "unique-update": unique_topo, "ecoli-transcript-elongation": TOPOLOGY, }, } # Since unique numpy updater is an class method, internal # deepcopying in vivarium-core causes this warning to appear warnings.filterwarnings( "ignore", message="Incompatible schema " "assignment at .+ Trying to assign the value <bound method " r"UniqueNumpyUpdater\.updater .+ to key updater, which already " r"has the value <bound method UniqueNumpyUpdater\.updater", ) engine = Engine(**settings, initial_state=deepcopy(initial_state)) engine.run_for(100) data = engine.emitter.get_timeseries() bulk_ids = initial_state["bulk"]["id"] data = format_data(data, bulk_ids, rna_dtypes, rnap_dtypes, submass_dtypes) plots(data) assertions(test_config, data) # Test running out of ntps initial_state["bulk"] = np.array( [ ("16S rRNA", 0), ("23S rRNA", 0), ("5S rRNA", 0), ("mRNA", 0), ("ATP[c]", 100), ("CTP[c]", 100), ("GTP[c]", 100), ("UTP[c]", 100), ("PPI[c]", 320771), ("APORNAP-CPLX[c]", 2768), ], dtype=[("id", "U40"), ("count", int)], ) engine = Engine(**settings, initial_state=deepcopy(initial_state)) engine.run_for(100) data = engine.emitter.get_timeseries() data = format_data(data, bulk_ids, rna_dtypes, rnap_dtypes, submass_dtypes) plots(data, "transcript_elongation_toymodel_100_ntps.png") assertions(test_config, data) # Test no ntps initial_state["bulk"] = np.array( [ ("16S rRNA", 0), ("23S rRNA", 0), ("5S rRNA", 0), ("mRNA", 0), ("ATP[c]", 0), ("CTP[c]", 0), ("GTP[c]", 0), ("UTP[c]", 0), ("PPI[c]", 320771), ("APORNAP-CPLX[c]", 2768), ], dtype=[("id", "U40"), ("count", int)], ) # Since unique numpy updater is an class method, internal # deepcopying in vivarium-core causes this warning to appear warnings.filterwarnings( "ignore", message="Incompatible schema " "assignment at .+ Trying to assign the value <bound method " r"UniqueNumpyUpdater\.updater .+ to key updater, which already " r"has the value <bound method UniqueNumpyUpdater\.updater", ) engine = Engine(**settings, initial_state=deepcopy(initial_state)) engine.run_for(100) data = engine.emitter.get_timeseries() data = format_data(data, bulk_ids, rna_dtypes, rnap_dtypes, submass_dtypes) plots(data, "transcript_elongation_toymodel_no_ntps.png") assertions(test_config, data)
[docs] def plots(actual_update, filename="transcript_elongation_toymodel.png"): import matplotlib.pyplot as plt # unpack update rnas_synthesized = actual_update["listeners"]["transcript_elongation_listener"][ "count_rna_synthesized" ] ntps_used = actual_update["listeners"]["growth_limits"]["ntp_used"] plt.figure() plt.subplot(2, 1, 1) plt.plot(range(len(rnas_synthesized)), rnas_synthesized) plt.xlabel("TU") plt.ylabel("Count") plt.title("Counts synthesized") plt.subplot(2, 1, 2) t = np.array(actual_update["time"]) width = 0.25 for i, ntp in enumerate(np.array(ntps_used).transpose()): plt.bar(t + (i - 2) * width, ntp, width, label=str(i)) plt.ylabel("Count") plt.title("NTP Counts Used") plt.legend() plt.subplots_adjust(hspace=0.5) plt.gcf().set_size_inches(10, 6) makedirs("out/migration", exist_ok=True) plt.savefig(f"out/migration/{filename}")
[docs] def assertions(config, actual_update): # unpack update trans_lengths = np.array( [r["transcript_length"] for r in actual_update["unique"]["RNA"]] ).T rnas_synthesized = actual_update["listeners"]["transcript_elongation_listener"][ "count_rna_synthesized" ] bulk_16SrRNA = actual_update["bulk"]["16S rRNA"] bulk_5SrRNA = actual_update["bulk"]["5S rRNA"] bulk_23SrRNA = actual_update["bulk"]["23S rRNA"] bulk_mRNA = actual_update["bulk"]["mRNA"] ntps_used = actual_update["listeners"]["growth_limits"]["ntp_used"] total_ntps_used = actual_update["listeners"]["transcript_elongation_listener"][ "count_NTPs_used" ] RNAP_coordinates = np.array( [v["coordinates"] for v in actual_update["unique"]["active_RNAP"]] ).T RNAP_elongations = actual_update["listeners"]["rnap_data"]["actual_elongations"] terminations = actual_update["listeners"]["rnap_data"]["did_terminate"] ppi = actual_update["bulk"]["PPI[c]"] inactive_RNAP = actual_update["bulk"]["APORNAP-CPLX[c]"] # transcript lengths are monotonically increasing assert np.all( list(map(lambda x: monotonically_increasing(x[x != 0]), trans_lengths)) ) # RNAP positions are monotonically increasing assert np.all( list(map(lambda x: monotonically_increasing(x[x != 0]), RNAP_coordinates)) ) # RNAP positions match transcript lengths? RNAP_coordinates_realigned = [] for v in RNAP_coordinates: diff = np.array(v) - v[0] RNAP_coordinates_realigned.append(diff[diff >= 0]) for t_length, expect, mRNA in zip( trans_lengths, RNAP_coordinates_realigned, config["is_mRNA"] ): t_length = t_length[: len(expect)] np.testing.assert_array_equal(t_length, expect) # bulk RNAs monotonically increasing? assert monotonically_increasing(bulk_16SrRNA) assert monotonically_increasing(bulk_5SrRNA) assert monotonically_increasing(bulk_23SrRNA) assert monotonically_increasing(bulk_mRNA) # Change in PPI matches #elongations - #initiations d_ppi = np.array(ppi)[1:] - ppi[:-1] expected_d_ppi = RNAP_elongations[1:] # Hacky way to find number of initiations # Assuming initiations only happen in the first time step (valid for toy model, # where there is no initiation process) expected_d_ppi[0] -= np.sum( (np.array([t[0] for t in trans_lengths]) == 0) & (np.array([t[1] for t in trans_lengths]) > 0) ) np.testing.assert_array_equal(d_ppi, expected_d_ppi) # Change in APORNAP-CPLX matches terminations d_inactive_RNAP = np.array(inactive_RNAP[1:]) - inactive_RNAP[:-1] np.testing.assert_array_equal(d_inactive_RNAP, terminations[1:]) # RNAP elongations matches total ntps used at each timestep np.testing.assert_array_equal(RNAP_elongations, [sum(v) for v in ntps_used]) # terminations match rnas_synthesized assert all(np.array([sum(v) for v in rnas_synthesized]) == terminations) d_16SrRNA = np.array(bulk_16SrRNA)[1:] - bulk_16SrRNA[:-1] d_5SrRNA = np.array(bulk_5SrRNA)[1:] - bulk_5SrRNA[:-1] d_23SrRNA = np.array(bulk_23SrRNA)[1:] - bulk_23SrRNA[:-1] np.testing.assert_array_equal( d_16SrRNA, np.array(rnas_synthesized)[:, config["idx_16S_rRNA"]].transpose()[0, 1:], ) np.testing.assert_array_equal( d_5SrRNA, np.array(rnas_synthesized)[:, config["idx_5S_rRNA"]].transpose()[0, 1:], ) np.testing.assert_array_equal( d_23SrRNA, np.array(rnas_synthesized)[:, config["idx_23S_rRNA"]].transpose()[0, 1:], ) # bulk NTP counts decrease by numbers used ntps_arr = np.array( [actual_update["bulk"][ntp] for ntp in ["ATP[c]", "CTP[c]", "GTP[c]", "UTP[c]"]] ) d_ntps = ntps_arr[:, 1:] - ntps_arr[:, :-1] np.testing.assert_array_equal(d_ntps, -np.array(ntps_used[1:]).transpose()) # total NTPS used matches sum of ntps_used, # total of each type of NTP used matches rna sequences assert np.all(np.sum(ntps_used, axis=1) == np.array(total_ntps_used)) actual = np.sum(ntps_used, axis=0) n_term = np.sum(rnas_synthesized, axis=0) sequence_ntps = np.array( [ [sum(seq == 0), sum(seq == 1), sum(seq == 2), sum(seq == 3)] for seq in config["rnaSequences"] ] ) expect = np.array([np.array(seq) * n for seq, n in zip(sequence_ntps, n_term)]).sum( axis=0 ) partial = np.array( [ 0 < t_length[-1] < final_length # length > 0 and not completed for t_length, final_length in zip(trans_lengths, config["rnaLengths"]) ] ) for a, e, is_partial in zip(actual, expect, partial): if is_partial: assert a >= e else: assert a == e
if __name__ == "__main__": test_transcript_elongation()