"""
=====================
Transcript Elongation
=====================
This process models nucleotide polymerization into RNA molecules
by RNA polymerases. Polymerization occurs across all polymerases
simultaneously and resources are allocated to maximize the progress
of all polymerases up to the limit of the expected polymerase elongation
rate and available nucleotides. The termination of RNA elongation occurs
once a RNA polymerase has reached the end of the annotated gene.
"""
from os import makedirs
import numpy as np
from copy import deepcopy
import warnings
from vivarium.core.engine import Engine
from wholecell.utils.random import stochasticRound
from wholecell.utils.polymerize import buildSequences, polymerize, computeMassIncrease
from wholecell.utils import units
from ecoli.library.schema import (
counts,
attrs,
numpy_schema,
bulk_name_to_idx,
listener_schema,
)
from ecoli.library.data_predicates import monotonically_increasing
from ecoli.processes.registries import topology_registry
from ecoli.processes.partition import PartitionedProcess
from ecoli.processes.unique_update import UniqueUpdate
# Register default topology for this process, associating it with process name
NAME = "ecoli-transcript-elongation"
TOPOLOGY = {
"environment": ("environment",),
"RNAs": ("unique", "RNA"),
"active_RNAPs": ("unique", "active_RNAP"),
"bulk": ("bulk",),
"bulk_total": ("bulk",),
"listeners": ("listeners",),
"timestep": ("timestep",),
}
topology_registry.register(NAME, TOPOLOGY)
[docs]
def make_elongation_rates(random, rates, timestep, variable):
return rates
[docs]
def get_attenuation_stop_probabilities(trna_conc):
return np.array([])
[docs]
class TranscriptElongation(PartitionedProcess):
"""Transcript Elongation PartitionedProcess
defaults:
- max_time_step (float) : ???
- rnaPolymeraseElongationRateDict (dict): Array with elongation rate
set points for different media environments.
- rnaIds (array[str]) : array of names for each TU
- rnaLengths (array[int]) : array of lengths for each TU
(in nucleotides?)
- rnaSequences (2D array[int]) : Array with the nucleotide sequences
of each TU. This is in the form of a 2D array where each row is a
TU, and each column is a position in the TU's sequence. Nucleotides
are stored as an index {0, 1, 2, 3}, and the row is padded with
-1's on the right to indicate where the sequence ends.
- ntWeights (array[float]): Array of nucleotide weights
- endWeight (array[float]): ???,
- replichore_lengths (array[int]): lengths of replichores
(in nucleotides?),
- is_mRNA (array[bool]): Mask for mRNAs
- ppi (str): ID of PPI
- inactive_RNAP (str): ID of inactive RNAP
- ntp_ids list[str]: IDs of ntp's (A, C, G, U)
- variable_elongation (bool): Whether to use variable elongation.
False by default.
- make_elongation_rates: Function to make elongation rates, of the
form: lambda random, rates, timestep, variable: rates
"""
name = NAME
topology = TOPOLOGY
defaults = {
"max_time_step": 0.0,
# Parameters
"rnaPolymeraseElongationRateDict": {},
"rnaIds": [],
"rnaLengths": np.array([]),
"rnaSequences": np.array([[]]),
"ntWeights": np.array([]),
"endWeight": np.array([]),
"replichore_lengths": np.array([]),
"n_fragment_bases": 0,
"recycle_stalled_elongation": False,
"submass_indices": {},
# mask for mRNAs
"is_mRNA": np.array([]),
# Bulk molecules
"inactive_RNAP": "",
"ppi": "",
"ntp_ids": [],
"variable_elongation": False,
"make_elongation_rates": make_elongation_rates,
"fragmentBases": [],
"polymerized_ntps": [],
"charged_trnas": [],
# Attenuation
"trna_attenuation": False,
"cell_density": 1100 * units.g / units.L,
"n_avogadro": 6.02214076e23 / units.mol,
"get_attenuation_stop_probabilities": (get_attenuation_stop_probabilities),
"attenuated_rna_indices": np.array([], dtype=int),
"location_lookup": {},
"seed": 0,
"emit_unique": False,
"time_step": 1,
}
def __init__(self, parameters=None):
super().__init__(parameters)
self.max_time_step = self.parameters["max_time_step"]
# Load parameters
self.rnaPolymeraseElongationRateDict = self.parameters[
"rnaPolymeraseElongationRateDict"
]
self.rnaIds = self.parameters["rnaIds"]
self.rnaLengths = self.parameters["rnaLengths"]
self.rnaSequences = self.parameters["rnaSequences"]
self.ppi = self.parameters["ppi"]
self.inactive_RNAP = self.parameters["inactive_RNAP"]
self.fragmentBases = self.parameters["fragmentBases"]
self.charged_trnas = self.parameters["charged_trnas"]
self.ntp_ids = self.parameters["ntp_ids"]
self.ntWeights = self.parameters["ntWeights"]
self.endWeight = self.parameters["endWeight"]
self.replichore_lengths = self.parameters["replichore_lengths"]
self.chromosome_length = self.replichore_lengths.sum()
self.n_fragment_bases = self.parameters["n_fragment_bases"]
self.recycle_stalled_elongation = self.parameters["recycle_stalled_elongation"]
# Mask for mRNAs
self.is_mRNA = self.parameters["is_mRNA"]
self.variable_elongation = self.parameters["variable_elongation"]
self.make_elongation_rates = self.parameters["make_elongation_rates"]
self.polymerized_ntps = self.parameters["polymerized_ntps"]
self.charged_trna_names = self.parameters["charged_trnas"]
# Attenuation
self.trna_attenuation = self.parameters["trna_attenuation"]
self.cell_density = self.parameters["cell_density"]
self.n_avogadro = self.parameters["n_avogadro"]
self.stop_probabilities = self.parameters["get_attenuation_stop_probabilities"]
self.attenuated_rna_indices = self.parameters["attenuated_rna_indices"]
self.attenuated_rna_indices_lookup = {
idx: i for i, idx in enumerate(self.attenuated_rna_indices)
}
self.attenuated_rnas = self.rnaIds[self.attenuated_rna_indices]
self.location_lookup = self.parameters["location_lookup"]
# random seed
self.seed = self.parameters["seed"]
self.random_state = np.random.RandomState(seed=self.seed)
# Helper indices for Numpy indexing
self.bulk_RNA_idx = None
[docs]
def ports_schema(self):
return {
"environment": {"media_id": {"_default": ""}},
"RNAs": numpy_schema("RNAs", emit=self.parameters["emit_unique"]),
"active_RNAPs": numpy_schema(
"active_RNAPs", emit=self.parameters["emit_unique"]
),
"bulk": numpy_schema("bulk"),
"bulk_total": numpy_schema("bulk"),
"listeners": {
"mass": listener_schema({"cell_mass": 0.0}),
"transcript_elongation_listener": listener_schema(
{
"count_NTPs_used": 0,
"count_rna_synthesized": ([0] * len(self.rnaIds), self.rnaIds),
"attenuation_probability": (
[0.0] * len(self.attenuated_rnas),
self.attenuated_rnas,
),
"counts_attenuated": (
[0] * len(self.attenuated_rnas),
self.attenuated_rnas,
),
}
),
"growth_limits": listener_schema(
{
"ntp_used": ([0] * len(self.ntp_ids), self.ntp_ids),
"ntp_pool_size": ([0] * len(self.ntp_ids), self.ntp_ids),
"ntp_request_size": ([0] * len(self.ntp_ids), self.ntp_ids),
"ntp_allocated": ([0] * len(self.ntp_ids), self.ntp_ids),
}
),
"rnap_data": listener_schema(
{
"actual_elongations": 0,
"did_terminate": 0,
"termination_loss": 0,
"did_stall": 0,
}
),
},
"timestep": {"_default": self.parameters["time_step"]},
}
[docs]
def calculate_request(self, timestep, states):
# At first update, convert all strings to indices
if self.bulk_RNA_idx is None:
bulk_ids = states["bulk"]["id"]
self.bulk_RNA_idx = bulk_name_to_idx(self.rnaIds, bulk_ids)
self.ntps_idx = bulk_name_to_idx(self.ntp_ids, bulk_ids)
self.ppi_idx = bulk_name_to_idx(self.ppi, bulk_ids)
self.inactive_RNAP_idx = bulk_name_to_idx(self.inactive_RNAP, bulk_ids)
self.fragmentBases_idx = bulk_name_to_idx(self.fragmentBases, bulk_ids)
self.charged_trnas_idx = bulk_name_to_idx(self.charged_trnas, bulk_ids)
# Calculate elongation rate based on the current media
current_media_id = states["environment"]["media_id"]
self.rnapElongationRate = self.rnaPolymeraseElongationRateDict[
current_media_id
].asNumber(units.nt / units.s)
self.elongation_rates = self.make_elongation_rates(
self.random_state,
self.rnapElongationRate,
states["timestep"],
self.variable_elongation,
)
# If there are no active RNA polymerases, return immediately
if states["active_RNAPs"]["_entryState"].sum() == 0:
return {}
# Determine total possible sequences of nucleotides that can be
# transcribed in this time step for each partial transcript
TU_indexes, transcript_lengths, is_full_transcript = attrs(
states["RNAs"], ["TU_index", "transcript_length", "is_full_transcript"]
)
is_partial_transcript = np.logical_not(is_full_transcript)
TU_indexes_partial = TU_indexes[is_partial_transcript]
transcript_lengths_partial = transcript_lengths[is_partial_transcript]
sequences = buildSequences(
self.rnaSequences,
TU_indexes_partial,
transcript_lengths_partial,
self.elongation_rates,
)
sequenceComposition = np.bincount(
sequences[sequences != polymerize.PAD_VALUE], minlength=4
)
# Calculate if any nucleotides are limited and request up to the number
# in the sequences or number available
ntpsTotal = counts(states["bulk"], self.ntps_idx)
maxFractionalReactionLimit = np.fmin(1, ntpsTotal / sequenceComposition)
requests = {
"bulk": [
(
self.ntps_idx,
(maxFractionalReactionLimit * sequenceComposition).astype(int),
)
]
}
requests["listeners"] = {
"growth_limits": {
"ntp_pool_size": counts(states["bulk"], self.ntps_idx),
"ntp_request_size": (
maxFractionalReactionLimit * sequenceComposition
).astype(int),
}
}
return requests
[docs]
def evolve_state(self, timestep, states):
ntpCounts = counts(states["bulk"], self.ntps_idx)
# If there are no active RNA polymerases, return immediately
if states["active_RNAPs"]["_entryState"].sum() == 0:
return {
"listeners": {
"transcript_elongation_listener": {
"count_NTPs_used": 0,
"count_rna_synthesized": np.zeros(len(self.rnaIds)),
},
"growth_limits": {
"ntp_used": np.zeros(len(self.ntp_ids)),
"ntp_allocated": ntpCounts,
},
"rnap_data": {
"actual_elongations": 0,
"did_terminate": 0,
"termination_loss": 0,
},
},
"active_RNAPs": {},
"RNAs": {},
}
# Get attributes from existing RNAs
(
TU_index_all_RNAs,
length_all_RNAs,
is_full_transcript,
is_mRNA_all_RNAs,
RNAP_index_all_RNAs,
) = attrs(
states["RNAs"],
[
"TU_index",
"transcript_length",
"is_full_transcript",
"is_mRNA",
"RNAP_index",
],
)
length_all_RNAs = length_all_RNAs.copy()
update = {"listeners": {"growth_limits": {}}}
# Determine sequences of RNAs that should be elongated
is_partial_transcript = np.logical_not(is_full_transcript)
partial_transcript_indexes = np.where(is_partial_transcript)[0]
TU_index_partial_RNAs = TU_index_all_RNAs[is_partial_transcript]
length_partial_RNAs = length_all_RNAs[is_partial_transcript]
is_mRNA_partial_RNAs = is_mRNA_all_RNAs[is_partial_transcript]
RNAP_index_partial_RNAs = RNAP_index_all_RNAs[is_partial_transcript]
if self.trna_attenuation:
cell_mass = states["listeners"]["mass"]["cell_mass"]
cellVolume = cell_mass * units.fg / self.cell_density
counts_to_molar = 1 / (self.n_avogadro * cellVolume)
attenuation_probability = self.stop_probabilities(
counts_to_molar * counts(states["bulk_total"], self.charged_trnas_idx)
)
prob_lookup = {
tu: prob
for tu, prob in zip(
self.attenuated_rna_indices, attenuation_probability
)
}
tu_stop_probability = np.array(
[
prob_lookup.get(idx, 0)
* (length < self.location_lookup.get(idx, 0))
for idx, length in zip(TU_index_partial_RNAs, length_partial_RNAs)
]
)
rna_to_attenuate = stochasticRound(
self.random_state, tu_stop_probability
).astype(bool)
else:
attenuation_probability = np.zeros(len(self.attenuated_rna_indices))
rna_to_attenuate = np.zeros(len(TU_index_partial_RNAs), bool)
rna_to_elongate = ~rna_to_attenuate
sequences = buildSequences(
self.rnaSequences,
TU_index_partial_RNAs,
length_partial_RNAs,
self.elongation_rates,
)
# Polymerize transcripts based on sequences and available nucleotides
reactionLimit = ntpCounts.sum()
result = polymerize(
sequences[rna_to_elongate],
ntpCounts,
reactionLimit,
self.random_state,
self.elongation_rates[TU_index_partial_RNAs][rna_to_elongate],
self.variable_elongation,
)
sequence_elongations = np.zeros_like(length_partial_RNAs)
sequence_elongations[rna_to_elongate] = result.sequenceElongation
ntps_used = result.monomerUsages
did_stall_mask = result.sequences_limited_elongation
# Calculate changes in mass associated with polymerization
added_mass = computeMassIncrease(
sequences, sequence_elongations, self.ntWeights
)
did_initialize = (length_partial_RNAs == 0) & (sequence_elongations > 0)
added_mass[did_initialize] += self.endWeight
# Calculate updated transcript lengths
updated_transcript_lengths = length_partial_RNAs + sequence_elongations
# Get attributes of active RNAPs
coordinates, is_forward, RNAP_unique_index = attrs(
states["active_RNAPs"], ["coordinates", "is_forward", "unique_index"]
)
# Active RNAP count should equal partial transcript count
assert len(RNAP_unique_index) == len(RNAP_index_partial_RNAs)
# All partial RNAs must be linked to an RNAP
assert np.count_nonzero(RNAP_index_partial_RNAs == -1) == 0
# Get mapping indexes between partial RNAs to RNAPs
partial_RNA_to_RNAP_mapping, _ = get_mapping_arrays(
RNAP_index_partial_RNAs, RNAP_unique_index
)
# Rescale boolean array of directions to an array of 1's and -1's.
# True is converted to 1, False is converted to -1.
direction_rescaled = (2 * (is_forward - 0.5)).astype(np.int64)
# Compute the updated coordinates of RNAPs. Coordinates of RNAPs
# moving in the positive direction are increased, whereas coordinates
# of RNAPs moving in the negative direction are decreased.
updated_coordinates = coordinates + np.multiply(
direction_rescaled, sequence_elongations[partial_RNA_to_RNAP_mapping]
)
# Reset coordinates of RNAPs that cross the boundaries between right
# and left replichores
updated_coordinates[updated_coordinates > self.replichore_lengths[0]] -= (
self.chromosome_length
)
updated_coordinates[updated_coordinates < -self.replichore_lengths[1]] += (
self.chromosome_length
)
# Update transcript lengths of RNAs and coordinates of RNAPs
length_all_RNAs[is_partial_transcript] = updated_transcript_lengths
# Update added submasses of RNAs. Masses of partial mRNAs are counted
# as mRNA mass as they are already functional, but the masses of other
# types of partial RNAs are counted as nonspecific RNA mass.
added_nsRNA_mass_all_RNAs = np.zeros_like(TU_index_all_RNAs, dtype=np.float64)
added_mRNA_mass_all_RNAs = np.zeros_like(TU_index_all_RNAs, dtype=np.float64)
added_nsRNA_mass_all_RNAs[is_partial_transcript] = np.multiply(
added_mass, np.logical_not(is_mRNA_partial_RNAs)
)
added_mRNA_mass_all_RNAs[is_partial_transcript] = np.multiply(
added_mass, is_mRNA_partial_RNAs
)
# Determine if transcript has reached the end of the sequence
terminal_lengths = self.rnaLengths[TU_index_partial_RNAs]
did_terminate_mask = updated_transcript_lengths == terminal_lengths
terminated_RNAs = np.bincount(
TU_index_partial_RNAs[did_terminate_mask],
minlength=self.rnaSequences.shape[0],
)
# Update is_full_transcript attribute of RNAs
is_full_transcript_updated = is_full_transcript.copy()
is_full_transcript_updated[partial_transcript_indexes[did_terminate_mask]] = (
True
)
n_terminated = did_terminate_mask.sum()
n_initialized = did_initialize.sum()
n_elongations = ntps_used.sum()
# Get counts of new bulk RNAs
n_new_bulk_RNAs = terminated_RNAs.copy()
n_new_bulk_RNAs[self.is_mRNA] = 0
update["RNAs"] = {
"set": {
"transcript_length": length_all_RNAs,
"is_full_transcript": is_full_transcript_updated,
"massDiff_nonspecific_RNA": attrs(
states["RNAs"], ["massDiff_nonspecific_RNA"]
)[0]
+ added_nsRNA_mass_all_RNAs,
"massDiff_mRNA": attrs(states["RNAs"], ["massDiff_mRNA"])[0]
+ added_mRNA_mass_all_RNAs,
},
"delete": partial_transcript_indexes[
np.logical_and(did_terminate_mask, np.logical_not(is_mRNA_partial_RNAs))
],
}
update["active_RNAPs"] = {
"set": {"coordinates": updated_coordinates},
"delete": np.where(did_terminate_mask[partial_RNA_to_RNAP_mapping])[0],
}
# Attenuation removes RNAs and RNAPs
counts_attenuated = np.zeros(len(self.attenuated_rna_indices), dtype=int)
if np.any(rna_to_attenuate):
for idx in TU_index_partial_RNAs[rna_to_attenuate]:
counts_attenuated[self.attenuated_rna_indices_lookup[idx]] += 1
update["RNAs"]["delete"] = np.append(
update["RNAs"]["delete"], partial_transcript_indexes[rna_to_attenuate]
)
update["active_RNAPs"]["delete"] = np.append(
update["active_RNAPs"]["delete"],
np.where(rna_to_attenuate[partial_RNA_to_RNAP_mapping])[0],
)
n_attenuated = rna_to_attenuate.sum()
# Handle stalled elongation
n_total_stalled = did_stall_mask.sum()
if self.recycle_stalled_elongation and (n_total_stalled > 0):
# Remove RNAPs that were bound to stalled elongation transcripts
# and increment counts of inactive RNAPs
update["active_RNAPs"]["delete"] = np.append(
update["active_RNAPs"]["delete"],
np.where(did_stall_mask[partial_RNA_to_RNAP_mapping])[0],
)
update["bulk"].append((self.inactive_RNAP_idx, n_total_stalled))
# Remove partial transcripts from stalled elongation
update["RNAs"]["delete"] = np.append(
update["RNAs"]["delete"], partial_transcript_indexes[did_stall_mask]
)
stalled_sequence_lengths = updated_transcript_lengths[did_stall_mask]
n_initiated_sequences = np.count_nonzero(stalled_sequence_lengths)
if n_initiated_sequences > 0:
# Get the full sequence of stalled transcripts
stalled_sequences = buildSequences(
self.rnaSequences,
TU_index_partial_RNAs[did_stall_mask],
np.zeros(n_total_stalled, dtype=np.int64),
np.full(n_total_stalled, updated_transcript_lengths.max()),
)
# Count the number of fragment bases in these transcripts up
# until the stalled length
base_counts = np.zeros(self.n_fragment_bases, dtype=np.int64)
for sl, seq in zip(stalled_sequence_lengths, stalled_sequences):
base_counts += np.bincount(
seq[:sl], minlength=self.n_fragment_bases
)
# Increment counts of fragment NTPs and phosphates
update["bulk"].append((self.fragmentBases_idx, base_counts))
update["bulk"].append((self.ppi_idx, n_initiated_sequences))
update.setdefault("bulk", []).append((self.ntps_idx, -ntps_used))
update["bulk"].append((self.bulk_RNA_idx, n_new_bulk_RNAs))
update["bulk"].append((self.inactive_RNAP_idx, n_terminated + n_attenuated))
update["bulk"].append((self.ppi_idx, n_elongations - n_initialized))
# Write outputs to listeners
update["listeners"]["transcript_elongation_listener"] = {
"count_rna_synthesized": terminated_RNAs,
"count_NTPs_used": n_elongations,
"attenuation_probability": attenuation_probability,
"counts_attenuated": counts_attenuated,
}
update["listeners"]["growth_limits"] = {"ntp_used": ntps_used}
update["listeners"]["rnap_data"] = {
"actual_elongations": sequence_elongations.sum(),
"did_terminate": did_terminate_mask.sum(),
"termination_loss": (terminal_lengths - length_partial_RNAs)[
did_terminate_mask
].sum(),
"did_stall": n_total_stalled,
}
return update
[docs]
def isTimeStepShortEnough(self, inputTimeStep, timeStepSafetyFraction):
return inputTimeStep <= self.max_time_step
[docs]
def get_mapping_arrays(x, y):
"""
Returns the array of indexes of each element of array x in array y, and
vice versa. Assumes that the elements of x and y are unique, and
set(x) == set(y).
"""
def argsort_unique(idx):
"""
Quicker argsort for arrays that are permutations of np.arange(n).
"""
n = idx.size
argsort_idx = np.empty(n, dtype=np.int64)
argsort_idx[idx] = np.arange(n)
return argsort_idx
x_argsort = np.argsort(x)
y_argsort = np.argsort(y)
x_to_y = x_argsort[argsort_unique(y_argsort)]
y_to_x = y_argsort[argsort_unique(x_argsort)]
return x_to_y, y_to_x
def test_transcript_elongation():
def make_elongation_rates(random, base, time_step, variable_elongation=False):
size = 9 # number of TUs
lengths = time_step * np.full(size, base, dtype=np.int64)
lengths = stochasticRound(random, lengths) if random else np.round(lengths)
return lengths.astype(np.int64)
test_config = TranscriptElongation.defaults
test_config["max_time_step"] = 2.0
with open("data/elongation_sequences.npy", "rb") as f:
sequences = np.load(f)
rna_schema = numpy_schema("RNAs", emit=True)
rnap_schema = numpy_schema("active_RNAPs", emit=True)
test_config = {
"max_time_step": 2.0,
"rnaPolymeraseElongationRateDict": {"minimal": 49.24 * units.nt / units.s},
"rnaIds": np.array(["16S rRNA", "23S rRNA", "5S rRNA", "mRNA"]),
"rnaLengths": np.array([1542, 2905, 120, 1080]),
"rnaSequences": sequences,
"ntWeights": np.array(
[5.44990582e-07, 5.05094471e-07, 5.71557547e-07, 5.06728441e-07]
),
"endWeight": np.array([2.90509649e-07]),
"replichore_lengths": np.array([2322985, 2316690]),
"idx_16S_rRNA": np.array([0]),
"idx_23S_rRNA": np.array([1]),
"idx_5S_rRNA": np.array([2]),
"is_mRNA": np.array([False, False, False, True]),
"ppi": "PPI[c]",
"inactive_RNAP": "APORNAP-CPLX[c]",
"ntp_ids": ["ATP[c]", "CTP[c]", "GTP[c]", "UTP[c]"],
"variable_elongation": False,
"make_elongation_rates": make_elongation_rates,
"seed": 0,
# Make sure to emit RNA and RNAP data
"_schema": {"RNAs": rna_schema, "active_RNAPs": rnap_schema},
}
transcript_elongation = TranscriptElongation(test_config)
# Need to add UniqueUpdate Step so unique molecule are updated each timestep
unique_topo = {"RNAs": ("unique", "RNA"), "active_RNAPs": ("unique", "active_RNAP")}
unique_update = UniqueUpdate({"unique_topo": unique_topo})
submass_dtypes = [
("massDiff_DNA", "<f8"),
("massDiff_mRNA", "<f8"),
("massDiff_metabolite", "<f8"),
("massDiff_miscRNA", "<f8"),
("massDiff_nonspecific_RNA", "<f8"),
("massDiff_protein", "<f8"),
("massDiff_rRNA", "<f8"),
("massDiff_tRNA", "<f8"),
("massDiff_water", "<f8"),
]
rna_dtypes = [
("_entryState", np.bool_),
("unique_index", int),
("TU_index", int),
("transcript_length", int),
("is_mRNA", np.bool_),
("is_full_transcript", np.bool_),
("can_translate", np.bool_),
("RNAP_index", int),
]
rnap_dtypes = [
("_entryState", np.bool_),
("unique_index", int),
("domain_index", int),
("coordinates", int),
("is_forward", np.bool_),
]
initial_state = {
"environment": {"media_id": "minimal"},
"unique": {
"RNA": np.array(
[
(1, i, i, 0, test_config["is_mRNA"][i], False, True, i) + (0,) * 9
for i in range(len(test_config["rnaIds"]))
],
dtype=rna_dtypes + submass_dtypes,
),
"active_RNAP": np.array(
[(1, i, 2, i * 1000, True) + (0,) * 9 for i in range(4)],
dtype=rnap_dtypes + submass_dtypes,
),
},
"bulk": np.array(
[
("16S rRNA", 0),
("23S rRNA", 0),
("5S rRNA", 0),
("mRNA", 0),
("ATP[c]", 6178058),
("CTP[c]", 1152211),
("GTP[c]", 1369694),
("UTP[c]", 3024874),
("PPI[c]", 320771),
("APORNAP-CPLX[c]", 2768),
],
dtype=[("id", "U40"), ("count", int)],
),
}
settings = {
"processes": {
"unique-update": unique_update,
"ecoli-transcript-elongation": transcript_elongation,
},
"topology": {
"unique-update": unique_topo,
"ecoli-transcript-elongation": TOPOLOGY,
},
}
# Since unique numpy updater is an class method, internal
# deepcopying in vivarium-core causes this warning to appear
warnings.filterwarnings(
"ignore",
message="Incompatible schema "
"assignment at .+ Trying to assign the value <bound method "
r"UniqueNumpyUpdater\.updater .+ to key updater, which already "
r"has the value <bound method UniqueNumpyUpdater\.updater",
)
engine = Engine(**settings, initial_state=deepcopy(initial_state))
engine.run_for(100)
data = engine.emitter.get_timeseries()
bulk_ids = initial_state["bulk"]["id"]
data = format_data(data, bulk_ids, rna_dtypes, rnap_dtypes, submass_dtypes)
plots(data)
assertions(test_config, data)
# Test running out of ntps
initial_state["bulk"] = np.array(
[
("16S rRNA", 0),
("23S rRNA", 0),
("5S rRNA", 0),
("mRNA", 0),
("ATP[c]", 100),
("CTP[c]", 100),
("GTP[c]", 100),
("UTP[c]", 100),
("PPI[c]", 320771),
("APORNAP-CPLX[c]", 2768),
],
dtype=[("id", "U40"), ("count", int)],
)
engine = Engine(**settings, initial_state=deepcopy(initial_state))
engine.run_for(100)
data = engine.emitter.get_timeseries()
data = format_data(data, bulk_ids, rna_dtypes, rnap_dtypes, submass_dtypes)
plots(data, "transcript_elongation_toymodel_100_ntps.png")
assertions(test_config, data)
# Test no ntps
initial_state["bulk"] = np.array(
[
("16S rRNA", 0),
("23S rRNA", 0),
("5S rRNA", 0),
("mRNA", 0),
("ATP[c]", 0),
("CTP[c]", 0),
("GTP[c]", 0),
("UTP[c]", 0),
("PPI[c]", 320771),
("APORNAP-CPLX[c]", 2768),
],
dtype=[("id", "U40"), ("count", int)],
)
# Since unique numpy updater is an class method, internal
# deepcopying in vivarium-core causes this warning to appear
warnings.filterwarnings(
"ignore",
message="Incompatible schema "
"assignment at .+ Trying to assign the value <bound method "
r"UniqueNumpyUpdater\.updater .+ to key updater, which already "
r"has the value <bound method UniqueNumpyUpdater\.updater",
)
engine = Engine(**settings, initial_state=deepcopy(initial_state))
engine.run_for(100)
data = engine.emitter.get_timeseries()
data = format_data(data, bulk_ids, rna_dtypes, rnap_dtypes, submass_dtypes)
plots(data, "transcript_elongation_toymodel_no_ntps.png")
assertions(test_config, data)
[docs]
def plots(actual_update, filename="transcript_elongation_toymodel.png"):
import matplotlib.pyplot as plt
# unpack update
rnas_synthesized = actual_update["listeners"]["transcript_elongation_listener"][
"count_rna_synthesized"
]
ntps_used = actual_update["listeners"]["growth_limits"]["ntp_used"]
plt.figure()
plt.subplot(2, 1, 1)
plt.plot(range(len(rnas_synthesized)), rnas_synthesized)
plt.xlabel("TU")
plt.ylabel("Count")
plt.title("Counts synthesized")
plt.subplot(2, 1, 2)
t = np.array(actual_update["time"])
width = 0.25
for i, ntp in enumerate(np.array(ntps_used).transpose()):
plt.bar(t + (i - 2) * width, ntp, width, label=str(i))
plt.ylabel("Count")
plt.title("NTP Counts Used")
plt.legend()
plt.subplots_adjust(hspace=0.5)
plt.gcf().set_size_inches(10, 6)
makedirs("out/migration", exist_ok=True)
plt.savefig(f"out/migration/{filename}")
[docs]
def assertions(config, actual_update):
# unpack update
trans_lengths = np.array(
[r["transcript_length"] for r in actual_update["unique"]["RNA"]]
).T
rnas_synthesized = actual_update["listeners"]["transcript_elongation_listener"][
"count_rna_synthesized"
]
bulk_16SrRNA = actual_update["bulk"]["16S rRNA"]
bulk_5SrRNA = actual_update["bulk"]["5S rRNA"]
bulk_23SrRNA = actual_update["bulk"]["23S rRNA"]
bulk_mRNA = actual_update["bulk"]["mRNA"]
ntps_used = actual_update["listeners"]["growth_limits"]["ntp_used"]
total_ntps_used = actual_update["listeners"]["transcript_elongation_listener"][
"count_NTPs_used"
]
RNAP_coordinates = np.array(
[v["coordinates"] for v in actual_update["unique"]["active_RNAP"]]
).T
RNAP_elongations = actual_update["listeners"]["rnap_data"]["actual_elongations"]
terminations = actual_update["listeners"]["rnap_data"]["did_terminate"]
ppi = actual_update["bulk"]["PPI[c]"]
inactive_RNAP = actual_update["bulk"]["APORNAP-CPLX[c]"]
# transcript lengths are monotonically increasing
assert np.all(
list(map(lambda x: monotonically_increasing(x[x != 0]), trans_lengths))
)
# RNAP positions are monotonically increasing
assert np.all(
list(map(lambda x: monotonically_increasing(x[x != 0]), RNAP_coordinates))
)
# RNAP positions match transcript lengths?
RNAP_coordinates_realigned = []
for v in RNAP_coordinates:
diff = np.array(v) - v[0]
RNAP_coordinates_realigned.append(diff[diff >= 0])
for t_length, expect, mRNA in zip(
trans_lengths, RNAP_coordinates_realigned, config["is_mRNA"]
):
t_length = t_length[: len(expect)]
np.testing.assert_array_equal(t_length, expect)
# bulk RNAs monotonically increasing?
assert monotonically_increasing(bulk_16SrRNA)
assert monotonically_increasing(bulk_5SrRNA)
assert monotonically_increasing(bulk_23SrRNA)
assert monotonically_increasing(bulk_mRNA)
# Change in PPI matches #elongations - #initiations
d_ppi = np.array(ppi)[1:] - ppi[:-1]
expected_d_ppi = RNAP_elongations[1:]
# Hacky way to find number of initiations
# Assuming initiations only happen in the first time step (valid for toy model,
# where there is no initiation process)
expected_d_ppi[0] -= np.sum(
(np.array([t[0] for t in trans_lengths]) == 0)
& (np.array([t[1] for t in trans_lengths]) > 0)
)
np.testing.assert_array_equal(d_ppi, expected_d_ppi)
# Change in APORNAP-CPLX matches terminations
d_inactive_RNAP = np.array(inactive_RNAP[1:]) - inactive_RNAP[:-1]
np.testing.assert_array_equal(d_inactive_RNAP, terminations[1:])
# RNAP elongations matches total ntps used at each timestep
np.testing.assert_array_equal(RNAP_elongations, [sum(v) for v in ntps_used])
# terminations match rnas_synthesized
assert all(np.array([sum(v) for v in rnas_synthesized]) == terminations)
d_16SrRNA = np.array(bulk_16SrRNA)[1:] - bulk_16SrRNA[:-1]
d_5SrRNA = np.array(bulk_5SrRNA)[1:] - bulk_5SrRNA[:-1]
d_23SrRNA = np.array(bulk_23SrRNA)[1:] - bulk_23SrRNA[:-1]
np.testing.assert_array_equal(
d_16SrRNA,
np.array(rnas_synthesized)[:, config["idx_16S_rRNA"]].transpose()[0, 1:],
)
np.testing.assert_array_equal(
d_5SrRNA,
np.array(rnas_synthesized)[:, config["idx_5S_rRNA"]].transpose()[0, 1:],
)
np.testing.assert_array_equal(
d_23SrRNA,
np.array(rnas_synthesized)[:, config["idx_23S_rRNA"]].transpose()[0, 1:],
)
# bulk NTP counts decrease by numbers used
ntps_arr = np.array(
[actual_update["bulk"][ntp] for ntp in ["ATP[c]", "CTP[c]", "GTP[c]", "UTP[c]"]]
)
d_ntps = ntps_arr[:, 1:] - ntps_arr[:, :-1]
np.testing.assert_array_equal(d_ntps, -np.array(ntps_used[1:]).transpose())
# total NTPS used matches sum of ntps_used,
# total of each type of NTP used matches rna sequences
assert np.all(np.sum(ntps_used, axis=1) == np.array(total_ntps_used))
actual = np.sum(ntps_used, axis=0)
n_term = np.sum(rnas_synthesized, axis=0)
sequence_ntps = np.array(
[
[sum(seq == 0), sum(seq == 1), sum(seq == 2), sum(seq == 3)]
for seq in config["rnaSequences"]
]
)
expect = np.array([np.array(seq) * n for seq, n in zip(sequence_ntps, n_term)]).sum(
axis=0
)
partial = np.array(
[
0 < t_length[-1] < final_length # length > 0 and not completed
for t_length, final_length in zip(trans_lengths, config["rnaLengths"])
]
)
for a, e, is_partial in zip(actual, expect, partial):
if is_partial:
assert a >= e
else:
assert a == e
if __name__ == "__main__":
test_transcript_elongation()