wholecell.utils.plotting_tools
Reusable plotting functions and tools
- wholecell.utils.plotting_tools.export_figure(plt, plotOutDir, plotOutFileName, metadata=None, transparent=False, dpi=120, extension=None)[source]
- wholecell.utils.plotting_tools.heatmap(ax, mask, data, completion_data, xticklabels, yticklabels, xlabel='', ylabel='', title='', box_text_size='medium', ax_font_size=9, title_font_size=9, percent_completion_threshold=0.88)[source]
- Parameters:
ax – Axes object
mask – Only plot values where mask is true, must match dimensions of
data
data – 2-dimensional numpy array of data to plot
completion_data – Percent of seeds that successfully completed all
value (generations that contributed to this)
of (must match dimensions)
data
xticklabels – tick values for x-axis
yticklabels – tick values for y-axis
xlabel – x-axis label for plot
ylabel – y-axis label for plot
title – plot title
box_text_size – size of text value to be printed in box
ax_font_size – font size for labeling axes
title_font_size – font size for title
percent_completion_threshold – If the percent completion for this
threshold (parameter combination is lower than the)
the (the number in)
0 (box will be colored red. If the threshold is)
be (no numbers will)
red. (colored)
- Returns:
heatmap of data, where squares are colored by value and numbers are colored by the percent of simulations that successfuly completed, for data corresponding to different parameter values in 2 dimensions
- wholecell.utils.plotting_tools.labeled_indexable_hist(ax, data, gen_data, gen_start, gen_end, colors, xlabel, bin_width=1.0, xlim=None, sf=1, font_size=9)[source]
Creates a histogram of (subset of) data, with label for mean and standard deviation of data for each variant
- Parameters:
ax – Axes object
data – data to plot
gen_data – generation index corresponding to each data point
gen_start – index of generation to start from (inclusive)
gen_end – index of generation to end at (exclusive)
colors – list of colors to use for each variant
xlabel – x-axis label for plot
bin_width – used in conjunction with xlim to determine number of bins
xlim – specify x-axis plotting region
sf – scale factor
font_size – font size for labeling axes
- Returns:
- histogram of data, colored by variant, for data corresponding to
generation indexes in [gen_start:gen_end]
- wholecell.utils.plotting_tools.labeled_indexable_scatter(ax, xdata, ydata, gen_data, gen_start, gen_end, colors, xlabel, ylabel, xlim=None, ylim=None, sf=1, font_size=9)[source]
Creates a scatterplot of (subset of) data, with label for mean and standard deviation of data for each variant
- Parameters:
ax – Axes object
xdata – data to plot on x axes
ydata – data to plot on y axes
gen_data – generation index corresponding to each data point
gen_start – index of generation to start from (inclusive)
gen_end – index of generation to end at (exclusive)
colors – list of colors to use for each variant
xlabel – x-axis label for plot
ylabel – y-axis label for plot
xlim – specify x-axis plotting region
ylim – specify y-axis plotting region
sf – scale factor
font_size – font size for labeling axes
- Returns:
- scatterplot of data, colored by variant, for data corresponding
to generation indexes in [gen_start:gen_end]