ecoli.analysis.colony.snapshots
- class ecoli.analysis.colony.snapshots.LineWidthData(*args, **kwargs)[source]
Bases:
Line2D
- property _linewidth
- set(*, agg_filter=<UNSET>, alpha=<UNSET>, animated=<UNSET>, antialiased=<UNSET>, clip_box=<UNSET>, clip_on=<UNSET>, clip_path=<UNSET>, color=<UNSET>, dash_capstyle=<UNSET>, dash_joinstyle=<UNSET>, dashes=<UNSET>, data=<UNSET>, drawstyle=<UNSET>, fillstyle=<UNSET>, gapcolor=<UNSET>, gid=<UNSET>, in_layout=<UNSET>, label=<UNSET>, linestyle=<UNSET>, linewidth=<UNSET>, marker=<UNSET>, markeredgecolor=<UNSET>, markeredgewidth=<UNSET>, markerfacecolor=<UNSET>, markerfacecoloralt=<UNSET>, markersize=<UNSET>, markevery=<UNSET>, mouseover=<UNSET>, path_effects=<UNSET>, picker=<UNSET>, pickradius=<UNSET>, rasterized=<UNSET>, sketch_params=<UNSET>, snap=<UNSET>, solid_capstyle=<UNSET>, solid_joinstyle=<UNSET>, transform=<UNSET>, url=<UNSET>, visible=<UNSET>, xdata=<UNSET>, ydata=<UNSET>, zorder=<UNSET>)
Set multiple properties at once.
Supported properties are
- Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image alpha: scalar or None animated: bool antialiased or aa: bool clip_box: ~matplotlib.transforms.BboxBase or None clip_on: bool clip_path: Patch or (Path, Transform) or None color or c: color dash_capstyle: .CapStyle or {‘butt’, ‘projecting’, ‘round’} dash_joinstyle: .JoinStyle or {‘miter’, ‘round’, ‘bevel’} dashes: sequence of floats (on/off ink in points) or (None, None) data: (2, N) array or two 1D arrays drawstyle or ds: {‘default’, ‘steps’, ‘steps-pre’, ‘steps-mid’, ‘steps-post’}, default: ‘default’ figure: ~matplotlib.figure.Figure or ~matplotlib.figure.SubFigure fillstyle: {‘full’, ‘left’, ‘right’, ‘bottom’, ‘top’, ‘none’} gapcolor: color or None gid: str in_layout: bool label: object linestyle or ls: {‘-’, ‘–’, ‘-.’, ‘:’, ‘’, (offset, on-off-seq), …} linewidth or lw: float marker: marker style string, ~.path.Path or ~.markers.MarkerStyle markeredgecolor or mec: color markeredgewidth or mew: float markerfacecolor or mfc: color markerfacecoloralt or mfcalt: color markersize or ms: float markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool] mouseover: bool path_effects: list of .AbstractPathEffect picker: float or callable[[Artist, Event], tuple[bool, dict]] pickradius: float rasterized: bool sketch_params: (scale: float, length: float, randomness: float) snap: bool or None solid_capstyle: .CapStyle or {‘butt’, ‘projecting’, ‘round’} solid_joinstyle: .JoinStyle or {‘miter’, ‘round’, ‘bevel’} transform: ~matplotlib.transforms.Transform url: str visible: bool xdata: 1D array ydata: 1D array zorder: float
- ecoli.analysis.colony.snapshots.add_time_axis(fig, grid, n_rows, n_cols, n_snapshots, snapshot_times, time_unit='s')[source]
- ecoli.analysis.colony.snapshots.color_phylogeny(ancestor_id, phylogeny, baseline_hsv, phylogeny_colors=None)[source]
get colors for all descendants of the ancestor through recursive calls to each generation
- ecoli.analysis.colony.snapshots.get_agent_colors(agents, phylogeny_names=True, agent_fill_color=None)[source]
- ecoli.analysis.colony.snapshots.get_field_range(fields, time_vec, include_fields=None, skip_fields=None, min_pct=0.95, max_pct=1)[source]
- ecoli.analysis.colony.snapshots.get_phylogeny_colors_from_names(agent_ids)[source]
Get agent colors using phlogeny saved in agent_ids This assumes the names use daughter_phylogeny_id() from meta_division
- ecoli.analysis.colony.snapshots.get_tag_ranges(agents, tagged_molecules, time_indices, convert_to_concs, tag_colors)[source]
- ecoli.analysis.colony.snapshots.init_axes(fig, edge_length_x, edge_length_y, grid, row_idx, col_idx, time, molecule, ylabel_size=20, title_size=12)[source]
- ecoli.analysis.colony.snapshots.make_snapshots_figure(agents, fields, bounds, n_snapshots, time_indices, snapshot_times, time_unit='s', plot_width=12, field_range=None, agent_colors=None, dead_color=[0, 0, 0], membrane_width=0.1, membrane_color=[1, 1, 1], default_font_size=36, field_label_size=32, agent_shape='segment', agent_alpha=1, colorbar_decimals=3, show_timeline=True, scale_bar_length=1, scale_bar_color='black', xlim=None, ylim=None, min_color='white', max_color='gray', out_dir=None, filename='snapshots', figsize=None)[source]
- Parameters:
bounds (
tuple
) – The dimensions of the environment.field_label_size (
float
) – Font size of the field label.dead_color (
list
of 3float
) – Color for dead cells in HSV. Defaults to [0, 0, 0], which is black.default_font_size (
float
) – Font size for titles and axis labels.agent_shape (
str
) – the shape of the agents. select fromrectangle
,segment
agent_alpha (
float
) – Alpha for agent plots.colorbar_decimals (
int
) – number of decimals in colorbar.scale_bar_length (
float
) – Length of scale bar. Defaults to 1 (in units of micrometers). If 0, no bar plotted.scale_bar_color (
str
) – Color of scale barxlim (
tuple
offloat
) – Tuple of lower and upper x-axis limits.ylim (
tuple
offloat
) – Tuple of lower and upper y-axis limits.min_color (any valid matplotlib color) – Color for minimum field values.
max_color (any valid matplotlib color) – Color for maximum field values.
out_dir (
str
) – Output directory, which isout
by default.filename (
str
) – Base name of output file.snapshots
by default.figsize (
tuple
) – Dimensions of figure in inches (takes precedence over plot_width)
- ecoli.analysis.colony.snapshots.make_tags_figure(agents, bounds, time_indices, snapshot_times, tag_ranges=None, tag_colors=None, min_color='black', agent_colors=None, n_snapshots=6, scale_bar_length=1, scale_bar_color='black', show_timeline=True, show_colorbar=True, time_unit='s', tagged_molecules=None, out_dir=False, filename='tags', agent_shape='segment', background_color='black', colorbar_decimals=1, tag_path_name_map=None, tag_label_size=20, plot_width=12, default_font_size=36, convert_to_concs=True, membrane_width=0.1, membrane_color=None, xlim=None, ylim=None, figsize=None, highlight_agent=None)[source]
Plot snapshots of the simulation over time
The snapshots depict the agents and the levels of tagged molecules in each agent by agent color intensity.
- Parameters:
data (dict) –
A dictionary with the following keys:
agents (
dict
): A mapping from times to dictionaries of agent data at that timepoint. Agent data dictionaries should have the same form as the hierarchy tree rooted atagents
.n_snapshots (
int
): Number of snapshots to show per row (i.e. for each molecule). Defaults to 6.out_dir (
str
): Output directory, which isout
by default.filename (
str
): Base name of output file.tags
by default.tagged_molecules (
typing.Iterable
): The tagged molecules whose concentrations will be indicated by agent color. Each molecule should be specified as atuple
of the path in the agent compartment to where the molecule’s count can be found, with the last value being the molecule’s count variable.convert_to_concs (
bool
): if True, convert counts to concentrations.background_color (
str
): use matplotlib colors,black
by defaultcolorbar_decimals (
int
): number of decimals in colorbar.tag_label_size (
float
): The font size for the tag name labeldefault_font_size (
float
): Font size for titles and axis labels.- membrane_width (
float
): Width to use for drawing agent edges.
- membrane_width (
- membrane_color (
list
): RGB color to use for drawing agent edges.
- membrane_color (
- tag_colors (
dict
): Mapping from tag ID to the HSV color to use for that tag as a list. Alternatively, each tag ID is mapped to a dictionary containing the cmp and norm keys with the
matplotlib.colors.Colormap
and thematplotlib.colors.Normalize
instance to use for that tag. Using dictionaries will overridemin_color
- tag_colors (
- figsize (
tuple
): Dimensions of figure in inches (takes precedence over plot_width)
- figsize (
- highlight_agent (
dict
): Mapping of agent IDs to membrane_color and membrane_width. Useful for highlighting specific agents, with rest using default color / width
- highlight_agent (
- ecoli.analysis.colony.snapshots.make_video(data, bounds, plot_type='fields', step=1, highlight_agents=None, show_timeseries=None, highlight_color=[0, 1, 1], out_dir='out', filename='snapshot_vid', cpus=1, **kwargs)[source]
Make a video with snapshots across time
- Parameters:
plot_type – (str) select either ‘fields’ or ‘tags’. ‘fields’ is the default
- ecoli.analysis.colony.snapshots.plot(params, conn, history_sql, config_sql, sim_data_paths, validation_data_paths, outdir, variant_metadata, variant_name)[source]
- ecoli.analysis.colony.snapshots.plot_agent(ax, data, color, agent_shape, membrane_width=0.1, membrane_color=[0, 0, 0], alpha=1)[source]
Plot an agent
- ecoli.analysis.colony.snapshots.plot_agents(ax, agents, agent_colors=None, agent_shape='segment', dead_color=None, membrane_width=0.1, membrane_color=[1, 1, 1], alpha=1, highlight_agent=None)[source]
Plot agents.
- Parameters:
ax – the axis for plot
agents (dict) – a mapping from agent ID to that agent’s data, which should have keys
location
,angle
,length
, andwidth
.agent_colors (dict) – Mapping from agent ID to HSV color.
dead_color (list) – List of 3 floats that define HSV color to use for dead cells. Dead cells only get treated differently if this is set.
membrane_width (float) – Width of agent outline to draw.
membrane_color (list) – List of 3 floats that define the RGB color to use for agent outlines.
alpha – Alpha value for agents.
highlight_agent – Mapping of agent ID to membrane_color and membrane_width. Useful for highlighting specific agents, with rest using default membrane_width and membrane_color
- ecoli.analysis.colony.snapshots.plot_snapshots(bounds, agents=None, fields=None, n_snapshots=5, snapshot_times=None, agent_fill_color=None, agent_colors=None, phylogeny_names=True, skip_fields=None, include_fields=None, out_dir=None, filename='snapshots', min_pct=0.95, max_pct=1, **kwargs)[source]
Plot snapshots of the simulation over time
The snapshots depict the agents and environmental molecule concentrations.
- Parameters:
data (dict) –
A dictionary with the following keys:
bounds (
tuple
): The dimensions of the environment.agents (
dict
): A mapping from times to dictionaries of agent data at that timepoint. Agent data dictionaries should have the same form as the hierarchy tree rooted atagents
.fields (
dict
): A mapping from times to dictionaries of environmental field data at that timepoint. Field data dictionaries should have the same form as the hierarchy tree rooted atfields
.n_snapshots (
int
): Number of snapshots to show per row (i.e. for each molecule). Defaults to 6.phylogeny_names (
bool
): This selects agent colors based on phylogenies seved in their names using meta_division.py daughter_phylogeny_id()skip_fields (
Iterable
): Keys of fields to exclude from the plot. This takes priority overinclude_fields
.include_fields (
Iterable
): Keys of fields to plot.snapshot_times (
Iterable
): Times to plot snapshots for. Defaults to None, in which case n_snapshots is used.out_dir (
str
): Output directory, which isout
by default.filename (
str
): Base name of output file.snapshots
by default.min_pct (
float
): Percent of minimum value to use as minimum in colorbar (1 = 100%)max_pct (
float
): Percent of maximum value to use as maximum in colorbar (1 = 100%)